Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 1:244:118625.
doi: 10.1016/j.neuroimage.2021.118625. Epub 2021 Oct 2.

NBS-Predict: A prediction-based extension of the network-based statistic

Affiliations
Free article

NBS-Predict: A prediction-based extension of the network-based statistic

Emin Serin et al. Neuroimage. .
Free article

Abstract

Graph models of the brain hold great promise as a framework to study functional and structural brain connectivity across scales and species. The network-based statistic (NBS) is a well-known tool for performing statistical inference on brain graphs, which controls the family-wise error rate in a mass univariate analysis by combining the cluster-based permutation technique and the graph-theoretical concept of connected components. As the NBS is based on group-level inference statistics, it does not inherently enable informed decisions at the level of individuals, which is, however, necessary for the realm of precision medicine. Here we introduce NBS-Predict, a new approach that combines the powerful features of machine learning (ML) and the NBS in a user-friendly graphical user interface (GUI). By combining ML models with connected components in a cross-validation (CV) structure, the new methodology provides a fast and convenient tool to identify generalizable neuroimaging-based biomarkers. The purpose of this paper is to (i) introduce NBS-Predict and evaluate its performance using two sets of simulated data with known ground truths, (ii) demonstrate the application of NBS-Predict in a real case-control study, including resting-state functional magnetic resonance imaging (rs-fMRI) data acquired from patients with schizophrenia, (iii) evaluate NBS-Predict using rs-fMRI data from the Human Connectome Project 1200 subjects release. We found that: (i) NBS-Predict achieved good statistical power on two sets of simulated data; (ii) NBS-Predict classified schizophrenia with an accuracy of 90% using subjects' functional connectivity matrices and identified a subnetwork with reduced connections in the group with schizophrenia, mainly comprising brain regions localized in frontotemporal, visual, and motor areas, as well as in the subcortex; (iii) NBS-Predict also predicted general intelligence scores from resting-state fMRI connectivity matrices with a prediction score of r = 0.2 and identified a large-scale subnetwork associated with general intelligence. Overall results showed that NBS-Predict performed comparable to or better than pre-existing feature selection algorithms (lasso, elastic net, top 5%, p-value thresholding) and connectome-based predictive modeling (CPM) in terms of identifying relevant features and prediction accuracy.

Keywords: Biomarkers; Connectome-based prediction; Functional connectivity; Graph theory; Machine learning; Network-based statistic.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest All authors have no conflicts of interest to declare.

Publication types