Extended Data Fig. 9. Intersectional dissection of PyN subpopulations.
a, Strategy for retrograde labelling of PyNFezf2 subpopulations by viral or tracer injections from the spinal cord of Fezf2-CreER mice. b, PyNFezf2corticospinal neurons in L5B of sensorimotor cortex labelled by retroAAV-flex-tdT. c, Fezf2CreER;Ai14 captures >95% of retrogradely labelled Fluorogold+ corticospinal neurons. Inset arrows indicate Fezf2 and Fluorogold co-labelling. d, An intersection-subtraction (IS) reporter strategy to label projection-defined PyNFezf2 subpopulations (retroAAV-Flp, EGFP) within the overall population (Fezf2-CreER, RFP). e, f, In motor cortex (MO), thalamus-projecting PyNsFezf2 are located in upper L5B, whereas medulla-projecting PyNsFezf2 are located in lower L5B. g, In SSp-bfd, PyNsFezf2 labelled from a defined projection target (EGFP) show more restricted sublaminar position in L5 compared to overall population (RFP). h, Normalized cortical depth distributions of overall PyNFezf2 population (leftward curve) and of each target-defined subpopulation (rightward curves) in SSp-bfd. i, In Fezf2-CreER;Pv-Flp;IS triple allele mice, PV- and PV+ PyNsFezf2 are distinguished by their expression of RFP and EGFP, respectively, in SSp-bfd. j, Sample voltage responses induced by current injection from a pair of PV+ (EGFP) and PV- (RFP) PyNsFezf2 by whole-cell patch recording in a cortical slice., Electrophysiological differences between 5 pairs of PV+ and PV- PyNsFezf2: resting membrane potential (Vm, -66.5 ± 1.6 vs. −70.7 ± 1.5 mV, mean ± s.e.m.; p = 0.0014, Student’s paired t-test); input resistance (MΩ, 60.1 ± 7.8 vs. 108.7 ± 45.4 MΩ, mean ± s.e.m.; p = 0.23, Student’s paired t-test). k, PyNsFezf2 retrogradely labelled from thalamus and medulla are distributed in the upper or lower L5B, respectively, in the motor cortex (related to e, f). In a Fezf2-CreER;IS mouse (upper panels), retroAAV-Flp was injected in thalamus. In a Fezf2-CreER mouse (lower panels), retroAAV-Flex-GFP was injected into the medulla. l-q, Representative hemi-sections containing the SS-bfd showing the labelling patterns of PyNsFezf2, PyNsPlxnd1, PyNsTle4 subsets by retroAAV-Flp injections at subcortical targets (arrows) in PyN-CreER;IS mice. In each panel, the overall PyN-CreER population was labelled by RFP, whereas the target-specific subset expressed EGFP. Corresponding cortical soma depth distribution is shown for Fezf2 hemisections in g, h and to the right for Plxnd1 (p) and Tle4 (q) hemisections (n = 2 for each target). PyNsTle4 project to VPM and consist of two subpopulations with apical dendrites in L4/5 (q’) and L1 (q’’), respectively, indicated by arrows. r, Retrograde targeting of striatum-projecting PyNsPlxnd1 by injection of retroAAV-FLEX-tdTomato in striatum. s, Coronal section displays injection site (arrowhead) and collaterals of retrogradely labelled PyNsPlxnd1 in contralateral striatum (arrow). t-w, Laminar patterns of retrogradely labelled PyNsPlxnd1 reveal that L5A PyNsPlxnd1project to both ipsi- and contralateral striatum, whereas L2/3 PyNsPlxnd1 project to ipsilateral striatum (t, u, v, w). x, Validation of four PyN driver lines by fluorescence in situ hybridization (Plxnd1, Fezf2, Tcerg1l) and antibody (TLE4) using Plxnd1-, Fezf2-, Tcerg1l-CreER driver mice bred with a Rosa26-loxpSTOPloxp-H2bGFP reporter. H2bGFP signal colocalized with mRNA in situ signals of Plxnd1, Fezf2 and Tcerg1l. In Tle4-Cre;Ai14 mice, RFP signals colocalized with immunofluorescence of the TLE4 antibody. Scale bars: b, l-q, 500µm; c, e, g, q’, q’’, x, 50µm; i, s-w, 100µm. Abbreviations explained in the Supplementary Information.