Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 21:8:740374.
doi: 10.3389/fmed.2021.740374. eCollection 2021.

A Systematic Review of Intravenous β-Hydroxybutyrate Use in Humans - A Promising Future Therapy?

Affiliations

A Systematic Review of Intravenous β-Hydroxybutyrate Use in Humans - A Promising Future Therapy?

Hayden White et al. Front Med (Lausanne). .

Abstract

Therapeutic ketosis is traditionally induced with dietary modification. However, owing to the time delay involved, this is not a practical approach for treatment of acute conditions such as traumatic brain injury. Intravenous administration of ketones would obviate this problem by rapidly inducing ketosis. This has been confirmed in a number of small animal and human studies. Currently no such commercially available product exists. The aim of this systematic review is to review the safety and efficacy of intravenous beta-hydroxybutyrate. The Web of Science, PubMed and EMBASE databases were searched, and a systematic review undertaken. Thirty-five studies were included. The total beta-hydroxybutyrate dose ranged from 30 to 101 g administered over multiple doses as a short infusion, with most studies using the racemic form. Such dosing achieves a beta-hydroxybutyrate concentration >1 mmol/L within 15 min. Infusions were well tolerated with few adverse events. Blood glucose concentrations occasionally were reduced but remained within the normal reference range for all study participants. Few studies have examined the effect of intravenous beta-hydroxybutyrate in disease states. In patients with heart failure, intravenous beta-hydroxybutyrate increased cardiac output by up to 40%. No studies were conducted in patients with neurological disease. Intravenous beta-hydroxybutyrate has been shown to increase cerebral blood flow and reduce cerebral glucose oxidation. Moreover, beta-hydroxybutyrate reduces protein catabolism and attenuates the production of counter-regulatory hormones during induced hypoglycemia. An intravenous beta-hydroxybutyrate formulation is well tolerated and may provide an alternative treatment option worthy of further research in disease states.

Keywords: acetoacetate; beta-hydroxybutyrate (BHB); intravenous; ketones; ketosis.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

    1. Randle PJ, Newsholme EA, Garland PB. Regulation of glucose uptake by muscle. 8 effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J. (1964) 93:652–65. 10.1042/bj0930652 - DOI - PMC - PubMed
    1. François B, Bachmann C, Schutgens RBH. Glucose metabolism in a child with 3-hydroxy-3-methylglutaryl-coenzyme a lyase deficiency. J Inherit Metab Dis. (1981) 4:163–4. 10.1007/BF02263641 - DOI
    1. Yassen KA, Galley HF, Lee A, Webster NR. Mitochondrial redox state in the critically ill. Br J Anaesth. (1999) 83:325–7. 10.1093/bja/83.2.325 - DOI - PubMed
    1. Iimuro Y, Yamamoto M, Inoue S, Kohno H, Matsumoto Y. Superoxide production by liver macrophages in a septic rat model–relation to arterial ketone body ratio. Eur Surg Res. (1992) 24:363–71. 10.1159/000129229 - DOI - PubMed
    1. Levy B, Sadoune LO, Gelot AM, Bollaert PE, Nabet P, Larcan A. Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med. (2000) 28:114–9. 10.1097/00003246-200001000-00019 - DOI - PubMed

Publication types

LinkOut - more resources