Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Aug;292(2):205-220.
doi: 10.1111/joim.13395. Epub 2021 Oct 8.

Advances in immune therapies in hematological malignancies

Affiliations
Free article
Review

Advances in immune therapies in hematological malignancies

Luca Mazzarella et al. J Intern Med. 2022 Aug.
Free article

Abstract

Immunotherapy in cancer takes advantage of the exquisite specificity, potency, and flexibility of the immune system to eliminate alien tumor cells. It involves strategies to activate the entire immune defense, by unlocking mechanisms developed by tumor cells to escape from surrounding immune cells, as well as engineered antibody and cellular therapies. What is important to note is that these are therapeutics with curative potential. The earliest example of immune therapy is allogeneic stem cell transplantation, introduced in 1957, which is still an important modality in hematology, most notably in myeloid malignancies. In this review, we discuss developmental trends of immunotherapy in hematological malignancies, focusing on some of the strategies that we believe will have the most impact on future clinical practice in this field. In particular, we delineate novel developments for therapies that have already been introduced into the clinic, such as immune checkpoint inhibition and chimeric antigen receptor T-cell therapies. Finally, we discuss the therapeutic potential of emerging strategies based on T-cell receptors and adoptive transfer of allogeneic natural killer cells.

Keywords: NK-cell therapy; T-cell receptor; TriKEs; chimeric antigen receptor T cell; immune checkpoint inhibition; killer cell immunoglobulin-like receptors.

PubMed Disclaimer

References

    1. Mazzarella L, Duso BA, Trapani D, Belli C, D'Amico P, Ferraro E, et al. The evolving landscape of ‘next-generation’ immune checkpoint inhibitors: a review. Eur J Cancer. 2019;117:14-31. https://doi.org/10.1016/j.ejca.2019.04.035
    1. Mazzarella L, Morganti S, Marra A, Trapani D, Tini G, Pelicci P, et al. Master protocols in immuno-oncology: do novel drugs deserve novel designs? J Immunother Cancer. 2020;8(1):e000475. https://doi.org/10.1136/jitc-2019-000475
    1. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014;515(7528):568-71. https://doi.org/10.1038/nature13954
    1. Carey CD, Gusenleitner D, Lipschitz M, Roemer MGM, Stack EC, Gjini E, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood 2017;130(22):2420-30. https://doi.org/10.1182/blood-2017-03-770719
    1. Smith SD, Till BG, Shadman MS, Lynch RC, Cowan AJ, Wu QV, et al. Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: potential for biomarker driven therapy. Br J Haematol. 2020;189(6):1119-26. https://doi.org/10.1111/bjh.16494

Publication types

Substances

LinkOut - more resources