Chemical engines: driving systems away from equilibrium through catalyst reaction cycles
- PMID: 34625723
- DOI: 10.1038/s41565-021-00975-4
Chemical engines: driving systems away from equilibrium through catalyst reaction cycles
Abstract
Biological systems exhibit a range of complex functions at the micro- and nanoscales under non-equilibrium conditions (for example, transportation and motility, temporal control, information processing and so on). Chemists also employ out-of-equilibrium systems, for example in kinetic selection during catalysis, self-replication, dissipative self-assembly and synthetic molecular machinery, and in the form of chemical oscillators. Key to non-equilibrium behaviour are the mechanisms through which systems are able to extract energy from the chemical reactants ('fuel') that drive such processes. In this Perspective we relate different examples of such powering mechanisms using a common conceptual framework. We discuss how reaction cycles can be coupled to other dynamic processes through positive (acceleration) or negative (inhibition) catalysis to provide the thermodynamic impetus for diverse non-equilibrium behaviour, in effect acting as a 'chemical engine'. We explore the way in which the energy released from reaction cycles is harnessed through kinetic selection in a series of what have sometimes been considered somewhat disparate fields (systems chemistry, molecular machinery, dissipative assembly and chemical oscillators), highlight common mechanistic principles and the potential for the synchronization of chemical reaction cycles, and identify future challenges for the invention and application of non-equilibrium systems. Explicit recognition of the use of fuelling reactions to power structural change in catalysts may stimulate the investigation of known catalytic cycles as potential elements for chemical engines, a currently unexplored area of catalysis research.
© 2021. Springer Nature Limited.
Similar articles
-
Chemical fuels for molecular machinery.Nat Chem. 2022 Jul;14(7):728-738. doi: 10.1038/s41557-022-00970-9. Epub 2022 Jul 1. Nat Chem. 2022. PMID: 35778564 Review.
-
Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction.Angew Chem Int Ed Engl. 2024 Jun 3;63(23):e202400495. doi: 10.1002/anie.202400495. Epub 2024 May 2. Angew Chem Int Ed Engl. 2024. PMID: 38568047 Review.
-
Repurposing a Catalytic Cycle for Transient Self-Assembly.J Am Chem Soc. 2024 Aug 21;146(33):23289-23296. doi: 10.1021/jacs.4c05871. Epub 2024 Aug 11. J Am Chem Soc. 2024. PMID: 39127918 Free PMC article.
-
A Minimalistic Covalent Bond-Forming Chemical Reaction Cycle that Consumes Adenosine Diphosphate.Angew Chem Int Ed Engl. 2024 May 27;63(22):e202402965. doi: 10.1002/anie.202402965. Epub 2024 Apr 18. Angew Chem Int Ed Engl. 2024. PMID: 38533678
-
Energy consumption in chemical fuel-driven self-assembly.Nat Nanotechnol. 2018 Oct;13(10):882-889. doi: 10.1038/s41565-018-0250-8. Epub 2018 Sep 17. Nat Nanotechnol. 2018. PMID: 30224796 Review.
Cited by
-
Photoactivated Artificial Molecular Motors.JACS Au. 2023 May 8;3(5):1301-1313. doi: 10.1021/jacsau.3c00089. eCollection 2023 May 22. JACS Au. 2023. PMID: 37234111 Free PMC article. Review.
-
Transient Dynamic Operation of G-Quadruplex-Gated Glucose Oxidase-Loaded ZIF-90 Metal-Organic Framework Nanoparticle Bioreactors.Nano Lett. 2023 Sep 27;23(18):8664-8673. doi: 10.1021/acs.nanolett.3c02542. Epub 2023 Sep 5. Nano Lett. 2023. PMID: 37669541 Free PMC article.
-
Ratcheting synthesis.Nat Rev Chem. 2024 Jan;8(1):8-29. doi: 10.1038/s41570-023-00558-y. Epub 2023 Dec 15. Nat Rev Chem. 2024. PMID: 38102412 Review.
-
Chemical signal regulated injectable coacervate hydrogels.Chem Sci. 2023 Jan 19;14(6):1512-1523. doi: 10.1039/d2sc06935k. eCollection 2023 Feb 8. Chem Sci. 2023. PMID: 36794201 Free PMC article.
-
Gears in chemical reaction networks for optimizing energy transduction efficiency.Nat Commun. 2025 Jul 1;16(1):5765. doi: 10.1038/s41467-025-60787-1. Nat Commun. 2025. PMID: 40593580 Free PMC article.
References
-
- Amos, L. A. Molecular motors: not quite like clockwork. Cell Mol. Life Sci. 65, 509–515 (2008). - DOI
-
- Sowa, Y. & Berry, R. M. Bacterial flagellar motor. Q. Rev. Biophys. 41, 103–132 (2008). - DOI
-
- Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000). - DOI
-
- Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003). - DOI
-
- Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008). - DOI
Publication types
LinkOut - more resources
Full Text Sources