QTL for seed shattering and threshability in intermediate wheatgrass align closely with well-studied orthologs from wheat, barley, and rice
- PMID: 34626160
- DOI: 10.1002/tpg2.20145
QTL for seed shattering and threshability in intermediate wheatgrass align closely with well-studied orthologs from wheat, barley, and rice
Abstract
Perennial grain crops have the potential to improve agricultural sustainability but few existing species produce sufficient grain yield to be economically viable. The outcrossing, allohexaploid, and perennial forage species intermediate wheatgrass (IWG) [Thinopyrum intermedium (Host) Barkworth & D. R. Dewey] has shown promise in undergoing direct domestication as a perennial grain crop using phenotypic and genomic selection. However, decades of selection will be required to achieve yields on par with annual small-grain crops. Marker-aided selection could accelerate progress if important genomic regions associated with domestication were identified. Here we use the IWG nested association mapping (NAM) population, with 1,168 F1 progeny across 10 families to dissect the genetic control of brittle rachis, floret shattering, and threshability. We used a genome-wide association study (GWAS) with 8,003 single nucleotide polymorphism (SNP) markers and linkage mapping-both within-family and combined across families-with a robust phenotypic dataset collected from four unique year-by-location combinations. A total of 29 quantitative trait loci (QTL) using GWAS and 20 using the combined linkage analysis were detected, and most large-effect QTL were in common across the two analysis methods. We reveal that the genetic control of these traits in IWG is complex, with significant QTL across multiple chromosomes, sometimes within and across homoeologous groups and effects that vary depending on the family. In some cases, these QTL align within 216 bp to 31 Mbp of BLAST hits for known domestication genes in related species and may serve as precise targets of selection and directions for further study to advance the domestication of IWG.
© 2021 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
Similar articles
-
Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium).Theor Appl Genet. 2019 Aug;132(8):2325-2351. doi: 10.1007/s00122-019-03357-6. Epub 2019 Jun 6. Theor Appl Genet. 2019. PMID: 31172227
-
Genome-Wide Association Study of Yield Component Traits in Intermediate Wheatgrass and Implications in Genomic Selection and Breeding.G3 (Bethesda). 2019 Aug 8;9(8):2429-2439. doi: 10.1534/g3.119.400073. G3 (Bethesda). 2019. PMID: 31147390 Free PMC article.
-
Genetic architecture and QTL selection response for Kernza perennial grain domestication traits.Theor Appl Genet. 2022 Aug;135(8):2769-2784. doi: 10.1007/s00122-022-04148-2. Epub 2022 Jun 28. Theor Appl Genet. 2022. PMID: 35763029 Free PMC article.
-
Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions.J Integr Plant Biol. 2019 Mar;61(3):204-225. doi: 10.1111/jipb.12737. Epub 2019 Feb 12. J Integr Plant Biol. 2019. PMID: 30414305 Review.
-
Advances in Rice Seed Shattering.Int J Mol Sci. 2023 May 17;24(10):8889. doi: 10.3390/ijms24108889. Int J Mol Sci. 2023. PMID: 37240235 Free PMC article. Review.
Cited by
-
Toward plant breeding for multicrop systems.Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2205792119. doi: 10.1073/pnas.2205792119. Epub 2023 Mar 27. Proc Natl Acad Sci U S A. 2023. PMID: 36972435 Free PMC article.
-
Natural variation and genetic loci underlying resistance to grain shattering in standing crop of modern wheat.Mol Genet Genomics. 2023 Sep;298(5):1211-1224. doi: 10.1007/s00438-023-02051-z. Epub 2023 Jul 6. Mol Genet Genomics. 2023. PMID: 37410105 Free PMC article.
-
Improving complex agronomic and domestication traits in the perennial grain crop intermediate wheatgrass with genetic mapping and genomic prediction.Plant Genome. 2025 Mar;18(1):e20498. doi: 10.1002/tpg2.20498. Epub 2024 Aug 28. Plant Genome. 2025. PMID: 39198233 Free PMC article.
-
Perennials as Future Grain Crops: Opportunities and Challenges.Front Plant Sci. 2022 Jul 29;13:898769. doi: 10.3389/fpls.2022.898769. eCollection 2022. Front Plant Sci. 2022. PMID: 35968139 Free PMC article.
-
Origin of current intermediate wheatgrass germplasm being developed for Kernza grain production.Res Sq [Preprint]. 2023 Oct 10:rs.3.rs-3399539. doi: 10.21203/rs.3.rs-3399539/v1. Res Sq. 2023. PMID: 37886550 Free PMC article. Preprint.
References
REFERENCES
-
- Altendorf, K. R., DeHaan, L. R., Heineck, G. C., Zhang, X., & Anderson, J. A. (2020). Floret site utilization and reproductive tiller number are primary components of grain yield in intermediate wheatgrass spaced plants. Crop Science, 61, 1073-1088. https://doi.org/10.1002/csc2.20385
-
- Altendorf, K. R., Larson, S., DeHaan, L. R., Crain, J., Neyhart, J., Dorn K. M., & Anderson J. A. (2021). Nested association mapping reveals the genetic architecture of spike emergence and anthesis timing in intermediate wheatgrass. G3 Genes, Genomes, Genetics, 11, jkab025. https://doi.org/10.1093/g3journal/jkab025
-
- Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-34017. https://doi.org/10.1093/nar/25.17.3389
-
- Asano, K., Yamasaki, M., Takuno, S., Miura, K., Katagiri, S., Ito T., Doi K., Wu J., Ebana K., Matsumoto T., Innan H., Kitano H., Ashikari M., & Matsuoka M. (2011). Artificial selection for a green revolution gene during japonica rice domestication. Proceedings of the National Academy of Sciences of the United States of America, 108, 11034-1039. https://doi.org/10.1073/pnas.1019490108/-/DCSupplemental.www.pnas.org/cg...
-
- Avni, R., Nave, M., Barad, O., Baruch, K., Twardziok, S. O., Gundlach H., Hale I., Mascher M., Spannagl M., Wiebe K., Jordan K. W., Golan G., Deek J., Ben-Zvi B., Ben-Zvi G., Himmelbach A., MacLachlan R. P., Sharpe A. G., Fritz A., … Distelfeld A. (2017).Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357, 93-97. https://doi.org/10.1126/science.aan0032
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous