Spacer Cation Alloying in Ruddlesden-Popper Perovskites for Efficient Red Light-Emitting Diodes with Precisely Tunable Wavelengths
- PMID: 34632623
- PMCID: PMC11468992
- DOI: 10.1002/adma.202104381
Spacer Cation Alloying in Ruddlesden-Popper Perovskites for Efficient Red Light-Emitting Diodes with Precisely Tunable Wavelengths
Abstract
Perovskite light-emitting diodes (PeLEDs) have recently shown significant progress with external quantum efficiencies (EQEs) exceeding 20%. However, PeLEDs with pure-red (620-660 nm) light emission, an essential part for full-color displays, remain a great challenge. Herein, a general approach of spacer cation alloying is employed in Ruddlesden-Popper perovskites (RPPs) for efficient red PeLEDs with precisely tunable wavelengths. By simply tuning the alloying ratio of dual spacer cations, the thickness distribution of quantum wells in the RPP films can be precisely modulated without deteriorating their charge-transport ability and energy funneling processes. Consequently, efficient PeLEDs with tunable emissions between pure red (626 nm) and deep red (671 nm) are achieved with peak EQEs up to 11.5%, representing the highest values among RPP-based pure-red PeLEDs. This work opens a new route for color tuning, which will spur future developments of pure-red or even pure-blue PeLEDs with high performance.
Keywords: Ruddlesden-Popper perovskites; electroluminescence; light-emitting diodes; pure red; spacer cation.
© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Red Perovskite Light-Emitting Diodes with Efficiency Exceeding 25% Realized by Co-Spacer Cations.Adv Mater. 2022 Sep;34(36):e2204460. doi: 10.1002/adma.202204460. Epub 2022 Aug 8. Adv Mater. 2022. PMID: 35855612
-
3D and 2D Metal Halide Perovskites for Blue Light-Emitting Diodes.Materials (Basel). 2022 Jun 29;15(13):4571. doi: 10.3390/ma15134571. Materials (Basel). 2022. PMID: 35806695 Free PMC article. Review.
-
Highly Efficient Pure-Blue Light-Emitting Diodes Based on Rubidium and Chlorine Alloyed Metal Halide Perovskite.Adv Mater. 2021 Aug;33(33):e2100783. doi: 10.1002/adma.202100783. Epub 2021 Jul 14. Adv Mater. 2021. PMID: 34260771
-
Promoting Energy Transfer Between Quasi-2D Perovskite Layers Toward Highly Efficient Red Light-Emitting Diodes.Small. 2022 Dec;18(49):e2204638. doi: 10.1002/smll.202204638. Epub 2022 Oct 30. Small. 2022. PMID: 36310146
-
Decoding the Role of Interface Engineering in Energy Transfer: Pathways to Enhanced Efficiency and Stability in Quasi-2D Perovskite Light-Emitting Diodes.Nanomaterials (Basel). 2025 Apr 12;15(8):592. doi: 10.3390/nano15080592. Nanomaterials (Basel). 2025. PMID: 40278458 Free PMC article. Review.
Cited by
-
Intragrain 3D perovskite heterostructure for high-performance pure-red perovskite LEDs.Nature. 2025 May;641(8062):352-357. doi: 10.1038/s41586-025-08867-6. Epub 2025 May 7. Nature. 2025. PMID: 40335712
-
Planar defect-free pure red perovskite light-emitting diodes via metastable phase crystallization.Sci Adv. 2022 Nov 11;8(45):eabq2321. doi: 10.1126/sciadv.abq2321. Epub 2022 Nov 11. Sci Adv. 2022. PMID: 36367940 Free PMC article.
-
Multifunctional π-Conjugated Additives for Halide Perovskite.Adv Sci (Weinh). 2022 Jun;9(17):e2105307. doi: 10.1002/advs.202105307. Epub 2022 Mar 22. Adv Sci (Weinh). 2022. PMID: 35315240 Free PMC article. Review.
-
Photoluminescence Modulation of Ruddlesden-Popper Perovskite via Phase Distribution Regulation.Nanomaterials (Basel). 2023 Jan 31;13(3):571. doi: 10.3390/nano13030571. Nanomaterials (Basel). 2023. PMID: 36770532 Free PMC article.
-
Efficient pure-red perovskite light-emitting diodes with strong passivation via ultrasmall-sized molecules.Sci Adv. 2024 May 3;10(18):eadn5683. doi: 10.1126/sciadv.adn5683. Epub 2024 May 3. Sci Adv. 2024. PMID: 38701203 Free PMC article.
References
-
- Zou Y., Yuan Z., Bai S., Gao F., Sun B., Mater. Today Nano 2019, 5, 100028.
-
- Liu X.‐K., Gao F., J. Phys. Chem. Lett. 2018, 9, 2251. - PubMed
-
- Liu X.‐K., Xu W., Bai S., Jin Y., Wang J., Friend R. H., Gao F., Nat. Mater. 2021, 20, 10. - PubMed
-
- Quan L. N., García de Arquer F. P., Sabatini R. P., Sargent E. H., Adv. Mater. 2018, 30, 1801996. - PubMed
-
- Cao Y., Wang N., Tian H., Guo J., Wei Y., Chen H., Miao Y., Zou W., Pan K., He Y., Cao H., Ke Y., Xu M., Wang Y., Yang M., Du K., Fu Z., Kong D., Dai D., Jin Y., Li G., Li H., Peng Q., Wang J., Huang W., Nature 2018, 562, 249. - PubMed
Grants and funding
- 717026/ERC Starting
- 2018-07109/Swedish Research Council
- CH2018-7736/Swedish Foundation for International Cooperation in Research and Higher Education
- 2009-00971/Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University
- National Supercomputing Centre (NSCC)
- M4080514/Nanyang Technological University
- MOE2019-T2-1-006/Ministry of Education
- MOE-T2EP50120-0004/Ministry of Education
- NRF-NRFI2018-04/National Research Foundation (NRF)
- 61774077/NSFC Project
- 2019B1515120073/Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province
- 2019B090921002/Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province
- 2020A1414010036/Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province
- KFVE20200006/Guangzhou Key laboratory of Vacuum Coating Technologies and New Energy Materials Open Projects Fund
- 2020M673055/China Postdoctoral Science Foundation
- 201605030008/Science and Technology Planning Project of Guangzhou
- 21621008/Fundamental Research Funds for the Central Universities
- 717026/FP7 Ideas: European Research Council
LinkOut - more resources
Full Text Sources