Enantioseparation of P-Stereogenic Secondary Phosphine Oxides and Their Stereospecific Transformation to Various Tertiary Phosphine Oxides and a Thiophosphinate
- PMID: 34633814
- PMCID: PMC8576816
- DOI: 10.1021/acs.joc.1c01364
Enantioseparation of P-Stereogenic Secondary Phosphine Oxides and Their Stereospecific Transformation to Various Tertiary Phosphine Oxides and a Thiophosphinate
Abstract
Secondary phosphine oxides incorporating various aryl and alkyl groups were synthesized in racemic form, and these products formed the library reported in this study. TADDOL derivatives were used to obtain the optical resolution of these P-stereogenic secondary phosphine oxides. The developed resolution method showed a good scope under the optimized reaction conditions, as 9 out of 14 derivatives could be prepared with an enantiomeric excess (ee) ≥ 79% and 5 of these derivatives were practically enantiopure >P(O)H compounds (ee ≥ 98%). The scalability of this resolution method was also demonstrated. Noncovalent interactions responsible for the formation of diasteromeric complexes were elucidated by single-crystal XRD measurements. (S)-(2-Methylphenyl)phenylphosphine oxide was transformed to a variety of P-stereogenic tertiary phosphine oxides and a thiophosphinate in stereospecific Michaelis-Becker, Hirao, or Pudovik reactions.
Conflict of interest statement
The authors declare no competing financial interest.
Figures







References
-
- Börner A.Phosphorus Ligands in Asymmetric Catalysis; Wiley-VCH: Weinheim, 2008.
- Grabulosa A.P-Stereogenic Ligands in Enantioselective Catalysis; The Royal Society of Chemistry: Cambridge, 2010.
- Kamer P. C. J., Van Leeuwen P. W. N. M., Eds. Phosphorus(III)Ligands in Homogeneous Catalysis: Design and Synthesis; New York: John Wiley & Sons, 2012.
- Imamoto T. Searching for Practically Useful P-Chirogenic Phosphine Ligands. Chem. Rec. 2016, 16, 2659–2673. 10.1002/tcr.201600098. - DOI - PubMed
-
- Benaglia M.; Rossi S. Chiral Phosphine Oxides in Present-Day Organocatalysis. Org. Biomol. Chem. 2010, 8, 3824–3830. 10.1039/c004681g. - DOI - PubMed
- Golandaj A.; Ahmad A.; Ramjugernath D. Phosphonium Salts in Asymmetric Catalysis: A Journey in a Decade’s Extensive Research Work. Adv. Synth. Catal. 2017, 359, 3676–3706. 10.1002/adsc.201700795. - DOI
- Guo H.; Fan Y. C.; Sun Z.; Wu Y.; Kwon O. Phosphine Organocatalysis. Chem. Rev. 2018, 118, 10049–10293. 10.1021/acs.chemrev.8b00081. - DOI - PMC - PubMed
- Ni H.; Chan W.-L.; Lu Y. Phosphine-Catalyzed Asymmetric Organic Reactions. Chem. Rev. 2018, 118, 9344–9411. 10.1021/acs.chemrev.8b00261. - DOI - PubMed
- Ayad T.; Gernet A.; Pirat J.-L.; Virieux D. Enantioselective Reactions Catalyzed by Phosphine Oxides. Tetrahedron 2019, 75, 4385–4418. 10.1016/j.tet.2019.06.042. - DOI
-
- Pradere U.; Garnier-Amblard E. C.; Coats S. J.; Amblard F.; Schinazi R. F. Synthesis of Nucleoside Phosphate and Phosphonate Prodrugs. Chem. Rev. 2014, 114, 9154–9218. 10.1021/cr5002035. - DOI - PMC - PubMed
- Mehellou Y.; Rattan H. S.; Balzarini J. The ProTide Prodrug Technology: From the Concept to the Clinic. J. Med. Chem. 2018, 61, 2211–2226. 10.1021/acs.jmedchem.7b00734. - DOI - PMC - PubMed
- Bellingham R.; Borrett G.; Bret G.; Choudary B.; Colclough D.; Hayes J.; Hayler J.; Hodnett N.; Ironmonger A.; Ochen A.; Pascoe D.; Richardson J.; Vit E.; Alexandre F. R.; Caillet C.; Amador A.; Bot S.; Bonaric S.; Da Costa D.; Lioure M. P.; Roland A.; Rosinovsky E.; Parsy C.; Dousson C. B. Development and Scale-Up of a Manufacturing Route for the Non-Nucleoside Reverse Transcriptase Inhibitor GSK2248761A (IDX-899): Synthesis of an Advanced Key Chiral Intermediate. Org. Process Res. Dev. 2018, 22, 200–206. 10.1021/acs.oprd.7b00356. - DOI
-
- Dutartre M.; Bayardon J.; Jugé S. Applications and Stereoselective Syntheses of P-Chirogenic Phosphorus Compounds. Chem. Soc. Rev. 2016, 45, 5771–5794. 10.1039/C6CS00031B. - DOI - PubMed
- Chrzanowski J.; Krasowska D.; Drabowicz J. Synthesis of Optically Active Tertiary Phosphine Oxides: A Historical Overview and the Latest Advances. Heteroat. Chem. 2018, 29, e2147610.1002/hc.21476. - DOI
- Lemouzy S.; Giordano L.; Hérault D.; Buono G. Introducing Chirality at Phosphorus Atoms: An Update on the Recent Synthetic Strategies for the Preparation of Optically Pure P-Stereogenic Molecules. Eur. J. Org. Chem. 2020, 2020, 3351–3366. 10.1002/ejoc.202000406. - DOI
- Cui Y. M.; Lin Y.; Xu L. W. Catalytic Synthesis of Chiral Organoheteroatom Compounds of Silicon, Phosphorus, and Sulfur via Asymmetric Transition Metal-Catalyzed C–H Functionalization. Coord. Chem. Rev. 2017, 330, 37–52. 10.1016/j.ccr.2016.09.011. - DOI
- Lin Y.; Ma W. Y.; Sun Q. Y.; Cui Y. M.; Xu L. W. Catalytic Synthesis of Chiral Phosphole Oxides via Desymmetric C-H Arylation of o -Bromoaryl Phosphine Oxides. Synlett 2017, 28 (12), 1432–1436. 10.1055/s-0036-1588983. - DOI
- Ye X.; Peng L.; Bao X.; Tan C.-H.; Wang H. Recent Developments in Highly Efficient Construction of P-Stereogenic Centers. Green Synth. Catal. 2021, 2 (1), 6–18. 10.1016/j.gresc.2020.12.002. - DOI
-
- Ackermann L. Air- and Moisture-Stable Secondary Phosphine Oxides as Preligands in Catalysis. Synthesis 2006, 2006, 1557–1571. 10.1055/s-2006-926427. - DOI
LinkOut - more resources
Full Text Sources