Risk Prediction of Cardiovascular Events by Exploration of Molecular Data with Explainable Artificial Intelligence
- PMID: 34638627
- PMCID: PMC8508897
- DOI: 10.3390/ijms221910291
Risk Prediction of Cardiovascular Events by Exploration of Molecular Data with Explainable Artificial Intelligence
Abstract
Cardiovascular diseases (CVD) annually take almost 18 million lives worldwide. Most lethal events occur months or years after the initial presentation. Indeed, many patients experience repeated complications or require multiple interventions (recurrent events). Apart from affecting the individual, this leads to high medical costs for society. Personalized treatment strategies aiming at prediction and prevention of recurrent events rely on early diagnosis and precise prognosis. Complementing the traditional environmental and clinical risk factors, multi-omics data provide a holistic view of the patient and disease progression, enabling studies to probe novel angles in risk stratification. Specifically, predictive molecular markers allow insights into regulatory networks, pathways, and mechanisms underlying disease. Moreover, artificial intelligence (AI) represents a powerful, yet adaptive, framework able to recognize complex patterns in large-scale clinical and molecular data with the potential to improve risk prediction. Here, we review the most recent advances in risk prediction of recurrent cardiovascular events, and discuss the value of molecular data and biomarkers for understanding patient risk in a systems biology context. Finally, we introduce explainable AI which may improve clinical decision systems by making predictions transparent to the medical practitioner.
Keywords: AI; biomarkers; cardiovascular disease; coronary artery disease; explainable artificial intelligence; genomics; machine learning; molecular networks; multi-omics; proteomics.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- De Bacquer D., Ueda P., Reiner Z., De Sutter J., De Smedt D., Lovic D., Gotcheva N., Fras Z., Pogosova N., Mirrakhimov E., et al. Prediction of recurrent event in patients with coronary heart disease: The EUROASPIRE Risk Model: Results from a prospective study in 27 countries in the WHO European region—The EURObservational Research Programme (EORP) of the European Society of Cardiology (ESC) Eur. J. Prev. Cardiol. 2020:zwaa128. doi: 10.1093/eurjpc/zwaa128. - DOI - PubMed
-
- Fox K.A.A., Dabbous O.H., Goldberg R.J., Pieper K.S., Eagle K.A., Werf F.V.D., Avezum A., Goodman S.G., Flather M.D., Anderson F.A., et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: Prospective multinational observational study (GRACE) BMJ. 2006;333:1091. doi: 10.1136/bmj.38985.646481.55. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- 01ZX1408D/Bundesministerium für Bildung und Forschung
- 01ZX1708G/Bundesministerium für Bildung und Forschung
- 01KL1802/Bundesministerium für Bildung und Forschung
- 16GW0198K/Bundesministerium für Bildung und Forschung
- 01ZX1706C/Bundesministerium für Bildung und Forschung
- 81X2600522/Deutsches Zentrum für Herz-Kreislaufforschung
- 18CVD02/Fondation Leducq
- SFB1123/Deutsche Forschungsgemeinschaft
- SFB TRR 267/Deutsche Forschungsgemeinschaft
- DMB-1805-0001/Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
- ZF4590201BA8/Ministerium für Wirtschaft, Wissenschaft und Digitalisierung
LinkOut - more resources
Full Text Sources
