Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives
- PMID: 34641185
- PMCID: PMC8512337
- DOI: 10.3390/polym13193365
Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives
Abstract
A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
Keywords: bacterial cellulose (BC); biopolymer; carbon source; industrial waste; microbial cellulose; nitrogen source.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Figures











Similar articles
-
Strategies for cost-effective and enhanced production of bacterial cellulose.Int J Biol Macromol. 2017 Sep;102:1166-1173. doi: 10.1016/j.ijbiomac.2017.04.110. Epub 2017 May 6. Int J Biol Macromol. 2017. PMID: 28487196 Review.
-
Utilization of gamma irradiated emulsified frying oil wastes as a carbon source for sustainable and economical production of bacterial cellulose membrane.BMC Microbiol. 2025 Apr 24;25(1):242. doi: 10.1186/s12866-025-03931-7. BMC Microbiol. 2025. PMID: 40275142 Free PMC article.
-
Pineapple core from the canning industrial waste for bacterial cellulose production by Komagataeibacter xylinus.Heliyon. 2023 Nov 3;9(11):e22010. doi: 10.1016/j.heliyon.2023.e22010. eCollection 2023 Nov. Heliyon. 2023. PMID: 38034652 Free PMC article.
-
Cost-effective production of kombucha bacterial cellulose by evaluating nutrient sources, quality assessment, and dyeing methods.Environ Sci Pollut Res Int. 2025 Jan;32(5):2713-2725. doi: 10.1007/s11356-025-35915-5. Epub 2025 Jan 15. Environ Sci Pollut Res Int. 2025. PMID: 39810012
-
Bacterial cellulose: recent progress in production and industrial applications.World J Microbiol Biotechnol. 2022 Apr 10;38(5):86. doi: 10.1007/s11274-022-03271-y. World J Microbiol Biotechnol. 2022. PMID: 35397756 Review.
Cited by
-
Critical Review of Natural Fiber Reinforced Hybrid Composites: Processing, Properties, Applications and Cost.Polymers (Basel). 2021 Oct 13;13(20):3514. doi: 10.3390/polym13203514. Polymers (Basel). 2021. PMID: 34685272 Free PMC article. Review.
-
Enzyme-loaded bacterial nanocellulose aerogel as a biocleaning material for artwork restoration.Sci Rep. 2025 Jul 15;15(1):25536. doi: 10.1038/s41598-025-05812-5. Sci Rep. 2025. PMID: 40665134 Free PMC article.
-
Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites.Materials (Basel). 2022 Jun 17;15(12):4312. doi: 10.3390/ma15124312. Materials (Basel). 2022. PMID: 35744371 Free PMC article. Review.
-
Kombucha Versus Vegetal Cellulose for Affordable Mucoadhesive (nano)Formulations.Gels. 2025 Jan 4;11(1):37. doi: 10.3390/gels11010037. Gels. 2025. PMID: 39852008 Free PMC article.
-
Bacterial Cellulose-Based Polymer Nanocomposites: A Review.Polymers (Basel). 2022 Nov 2;14(21):4670. doi: 10.3390/polym14214670. Polymers (Basel). 2022. PMID: 36365662 Free PMC article. Review.
References
-
- Abral H., Pratama A.B., Handayani D., Mahardika M., Aminah I., Sandrawati N., Sugiarti E., Muslimin A.N., Sapuan S.M., Ilyas R.A. Antimicrobial Edible Film Prepared from Bacterial Cellulose Nanofibers/Starch/Chitosan for a Food Packaging Alternative. Int. J. Polym. Sci. 2021;2021:1–11. doi: 10.1155/2021/6641284. - DOI
-
- Abral H., Chairani M.K., Rizki M.D., Mahardika M., Handayani D., Sugiarti E., Muslimin A.N., Sapuan S.M., Ilyas R.A. Characterization of compressed bacterial cellulose nanopaper film after exposure to dry and humid conditions. J. Mater. Res. Technol. 2021;11:896–904. doi: 10.1016/j.jmrt.2021.01.057. - DOI
-
- Cazón P., Velazquez G., Vázquez M. Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocoll. 2020;99:105323. doi: 10.1016/j.foodhyd.2019.105323. - DOI
-
- Lin C.-M., Chang Y.-C., Cheng L.-C., Liu C.-H., Chang S.C., Hsien T.-Y., Wang D.-M., Hsieh H.-J. Preparation of graphene-embedded hydroxypropyl cellulose/chitosan/polyethylene oxide nanofiber membranes as wound dressings with enhanced antibacterial properties. Cellulose. 2020;27:2651–2667. doi: 10.1007/s10570-019-02940-w. - DOI
-
- Kamiński K., Jarosz M., Grudzień J., Pawlik J., Zastawnik F., Pandyra P., Kołodziejczyk A.M. Hydrogel bacterial cellulose: A path to improved materials for new eco-friendly textiles. Cellulose. 2020;27:5353–5365. doi: 10.1007/s10570-020-03128-3. - DOI
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases