Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Sep 30;26(19):5938.
doi: 10.3390/molecules26195938.

Total Syntheses of Pladienolide-Derived Spliceosome Modulators

Affiliations
Review

Total Syntheses of Pladienolide-Derived Spliceosome Modulators

Jaehoon Sim et al. Molecules. .

Abstract

Pladienolides, an emerging class of naturally occurring spliceosome modulators, exhibit interesting structural features, such as highly substituted 12-membered macrocycles and epoxide-containing diene side chains. The potential of pladienolides as anti-cancer agents is confirmed by H3B-8800, a synthetic analog of this natural product class, which is currently under Phase I clinical trials. Since its isolation in 2004 and the first total synthesis in 2007, a dozen total syntheses and synthetic approaches toward the pladienolide class have been reported to date. This review focuses on the eight completed total syntheses of naturally occurring pladienolides or their synthetic analogs, in addition to a synthetic approach to the main framework of the natural product.

Keywords: macrocycles; natural products; pladienolide class; spliceosome; total synthesis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Representative examples of naturally occurring spliceosome modulators.
Figure 2
Figure 2
Chemical structure of pladienolides A–G (17), 6-deoxypladienolide D (8), FD-895 (9), and synthetic analogs (10 and 11). The colors show the part of each compound that is structurally different from the structure of pladienolide A (1).
Figure 3
Figure 3
Brief summary of the disconnections of pladienolides as reported, 2007–2021.
Scheme 1
Scheme 1
Kotake’s retrosynthetic analysis of pladienolides A and B (2007).
Scheme 2
Scheme 2
Preparation of three fragments for the synthesis of pladienolide B (Kotake, 2007).
Scheme 3
Scheme 3
Completion of the total synthesis of pladienolides A and B (Kotake, 2007).
Scheme 4
Scheme 4
Preparation of the side chain fragment and completion of the total synthesis of pladienolide D (Kotake, 2007).
Scheme 5
Scheme 5
Ghosh and Anderson’s retrosynthetic analysis of pladienolide B (2012).
Scheme 6
Scheme 6
Preparation of the fragments for the synthesis of pladienolide B (Ghosh and Anderson, 2012).
Scheme 7
Scheme 7
Final stage of the total synthesis of pladienolide B (2) (Ghosh and Anderson, 2012).
Scheme 8
Scheme 8
Burkart’s retrosynthetic analysis of FD-895 (2012).
Scheme 9
Scheme 9
Synthesis of macrocyclic core 64 (Burkart, 2012).
Scheme 10
Scheme 10
Final stage of the total synthesis of FD-895 (Burkart, 2012).
Scheme 11
Scheme 11
Kumar and Chandrasekhar’s retrosynthetic analysis of pladienolide B (2013).
Scheme 12
Scheme 12
Construction of the macrocyclic core unit 82 (Kumar and Chandrasekhar, 2013).
Scheme 13
Scheme 13
Final stage of the total synthesis of pladienolide B (Kumar and Chandrasekhar, 2013).
Scheme 14
Scheme 14
Synthesis of truncated pladienolide B analogs (Kumar and Chandrasekhar, 2013).
Scheme 15
Scheme 15
Keaney’s retrosynthetic analysis of 6-deoxypladienolide D (2014).
Scheme 16
Scheme 16
Total synthesis of 6-deoxypladienolide D (Keaney, 2014).
Scheme 17
Scheme 17
Final stage of the total synthesis of 6-deoxypladienolide D (Keaney, 2014).
Scheme 18
Scheme 18
Yoo and Krische’s retrosynthetic analysis of pladienolide B (2021).
Scheme 19
Scheme 19
Preparation of fragments required for the synthesis of pladienolide B (Yoo and Krische, 2021).
Scheme 20
Scheme 20
The completion of the total synthesis of pladienolide B (Yoo and Krische, 2021).
Figure 4
Figure 4
Structural comparison of pladienolide B (2) and 10-deoxymethynolide (117).
Scheme 21
Scheme 21
Skaanderup and Jensen’s retrosynthetic analysis (2008).
Scheme 22
Scheme 22
Synthesis of the core structure of ent-pladienolide B (Skaanderup and Jensen, 2008).
Scheme 23
Scheme 23
Maier’s retrosynthetic analysis of pladienolide B (2014).
Scheme 24
Scheme 24
Synthesis of the macrocyclic core unit 143 (Maier, 2014).
Scheme 25
Scheme 25
Preparation of the side-chain unit 144 and the final stage of the total synthesis of pladienolide B (Maier, 2014).
Scheme 26
Scheme 26
Rhoades et al.’s retrosynthetic analysis of pladienolide A, B, and H3B-8800 (2021).
Scheme 27
Scheme 27
Preparation of a 12-membered macrocyclic unit (Rhoades et al., 2021).
Scheme 28
Scheme 28
Final stage of the total synthesis of pladienolide A, B, and H3B-8800 (Rhoades et al., 2021).

References

    1. Boccaletto P., Machnicka M.A., Purta E., Piątkowski P., Baginski B., Wirecki T.K., De Crécy-Lagard V., Ross R., Limbach P.A., Kotter A., et al. Modomics: A database of RNA modification pathways. 2017 Update. Nucleic Acids Res. 2017;46:D303–D307. doi: 10.1093/nar/gkx1030. - DOI - PMC - PubMed
    1. Di C., Syafrizayanti Z.Q., Chen Y., Wang Y., Zhang X., Liu Y., Sun C., Zhang H., Hoheisel J.D. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ. 2018;26:1181–1194. doi: 10.1038/s41418-018-0231-3. - DOI - PMC - PubMed
    1. Will C.L., Lührmann R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 2011;3:a004978. doi: 10.1101/cshperspect.a003707. - DOI - PMC - PubMed
    1. Zhang Y., Qian J., Gu C., Yang Y. Alternative splicing and cancer: A systematic review. Signal Transduct. Target. Ther. 2021;6:78. doi: 10.1038/s41392-021-00486-7. - DOI - PMC - PubMed
    1. Zhou Z., Gong Q., Wang Y., Li M., Wang L., Ding H., Li P. The biological function and clinical significance of SF3B1 mutations in cancer. Biomark. Res. 2020;8:38. doi: 10.1186/s40364-020-00220-5. - DOI - PMC - PubMed

MeSH terms