Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;36(5):921-929.
doi: 10.1038/s41433-021-01805-6. Epub 2021 Oct 13.

Myopia prediction: a systematic review

Affiliations

Myopia prediction: a systematic review

Xiaotong Han et al. Eye (Lond). 2022 May.

Abstract

Myopia is a leading cause of visual impairment and has raised significant international concern in recent decades with rapidly increasing prevalence and incidence worldwide. Accurate prediction of future myopia risk could help identify high-risk children for early targeted intervention to delay myopia onset or slow myopia progression. Researchers have built and assessed various myopia prediction models based on different datasets, including baseline refraction or biometric data, lifestyle data, genetic data, and data integration. Here, we summarize all related work published in the past 30 years and provide a comprehensive review of myopia prediction methods, datasets, and performance, which could serve as a useful reference and valuable guideline for future research.

摘要: 近视是导致视力损害的主要原因之一, 近几十年来, 随着全球范围内患病率和发病率的迅速上升, 近视已经引起了国际社会的广泛关注。对未来近视风险的准确预测可以帮助识别具有高风险的儿童, 以便进行早期有针对性的干预, 以延迟近视发病或减缓近视进展。研究人员基于不同的数据库建立并评估了各种近视预测模型, 包括基线屈光或生物特征的数据库、生活方式的数据库、基因的数据库和各数据库的整合。在这里, 我们总结了过去30年发表的所有相关工作, 并对近视的预测方法、数据库和表现进行了全面的综述, 给未来的研究提供了有用的参考和有价值的指导。.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. The workflow for myopia prediction.
These five steps indicate the general workflow to develop a myopia prediction model.
Fig. 2
Fig. 2. A taxonomy of myopia prediction methods from a data-driven perspective.
Myopia prediction can be generally classified into four categories from a data-driven perspective, and the contents shown in the colored blocks indicate related publications in the literature.

References

    1. Fricke TR, Jong M, Naidoo KS, Sankaridurg P, Naduvilath TJ, Ho SM, et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling. Br J Ophthalmol. 2018;102:855–62. doi: 10.1136/bjophthalmol-2017-311266. - DOI - PMC - PubMed
    1. Morgan IG, French AN, Ashby RS, Guo X, Ding X, He M, et al. The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res. 2018;62:134–49. doi: 10.1016/j.preteyeres.2017.09.004. - DOI - PubMed
    1. Wolffsohn JS, Calossi A, Cho P, Gifford K, Jones L, Jones D, et al. Global trends in myopia management attitudes and strategies in clinical practice − 2019 Update. Cont Lens Anterior Eye. 2020;43:9–17. doi: 10.1016/j.clae.2019.11.002. - DOI - PubMed
    1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–42. doi: 10.1016/j.ophtha.2016.01.006. - DOI - PubMed
    1. Ha JJ, He M. Preventing myopia in East Asia. Community Eye Health. 2019;32:13–14. - PMC - PubMed

Publication types