Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Nov 5;261(31):14443-7.

Association of steroid sulfatase with one of the arylsulfatase C isozymes in human fibroblasts

  • PMID: 3464600
Free article

Association of steroid sulfatase with one of the arylsulfatase C isozymes in human fibroblasts

P L Chang et al. J Biol Chem. .
Free article

Abstract

When arylsulfatase C, a microsomal membrane-bound enzyme, is assayed with its natural substrates, the 3-beta-hydroxysteroid sulfates, it is also known as steroid sulfatase. Whether arylsulfatase C and steroid sulfatase are identical enzymes or not, however, has long been disputed. We now report that two electrophoretic variants of arylsulfatase C occur in normal human fibroblasts: one has a single anodic band of activity, "s," and the other has an additional faster migrating band, "f". The two types, s and "f + s", occur in cells from either sex. When fibroblast strains with the f + s forms of arylsulfatase C were cloned, two types of primary clones were always obtained: s and f + s. A single f band was never seen. When these primary clones were subcloned, however, the arylsulfatase C phenotype remained unchanged: primary s clones gave rise to s subclones and f + s clones to f + s subclones only. Therefore, these forms were clonal in origin and demonstrated a novel inheritance pattern in human cultured cells. The appearance of increasing amounts of the f band was correlated with up to 4-fold increase of arylsulfatase C activity, whereas the steroid sulfatase activity remained constant, thus demonstrating that arylsulfatase C was not identical with steroid sulfatase activity. Polyclonal antibodies raised against the s form immunoprecipitated activities of the s form of arylsulfatase C and steroid sulfatase but not the f form of arylsulfatase C. Therefore, we conclude that only the s form of arylsulfatase C is immunologically related to steroid sulfatase so that arylsulfatase C per se is not necessarily identical with steroid sulfatase. In addition, a novel form of genetic heterogeneity of isozymes in human fibroblasts is demonstrated.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources