Migrasomes and exosomes; different types of messaging vesicles in podocytes
- PMID: 34647672
- DOI: 10.1002/cbin.11711
Migrasomes and exosomes; different types of messaging vesicles in podocytes
Abstract
Podocytes, highly specified kidney epithelial cells, live under several pathological stimuli and stresses during which they adapt themselves to keep homeostasis. Nevertheless, under extreme stress, a complex scenario of podocyte damage and its consequences occur. Podocyte damage causes foot process effacement and their detachment from the glomerular basement membrane, leading to proteinuria. Podocyte-derived extracellular vesicles (pEVs), mainly microparticles and exosomes are considered as signaling mediators of intercellular communication. Recently, it has been shown that throughout the injury-related migration procedure, podocytes are capable of releasing the injury-related migrasomes. Evidence indicates that at the early stages of glomerular disorders, increased levels of pEVs are observed in urine. At the early stage of nephropathy, pEVs especially migrasomes seem to be more sensitive and reliable indicators of podocyte stress and/or damage than proteinuria. This review highlights the current knowledge of pEVs and their values for the diagnosis of different kidney diseases.
Keywords: exosomes; extracellular vesicles; migrasomes; podocyte injury; podocytopathy; urinary biomarkers.
© 2021 International Federation for Cell Biology.
Similar articles
-
Podocyte-Released Migrasomes in Urine Serve as an Indicator for Early Podocyte Injury.Kidney Dis (Basel). 2020 Nov;6(6):422-433. doi: 10.1159/000511504. Epub 2020 Oct 23. Kidney Dis (Basel). 2020. PMID: 33313063 Free PMC article.
-
Contribution of podocyte inflammatory exosome release to glomerular inflammation and sclerosis during hyperhomocysteinemia.Biochim Biophys Acta Mol Basis Dis. 2021 Jul 1;1867(7):166146. doi: 10.1016/j.bbadis.2021.166146. Epub 2021 Apr 14. Biochim Biophys Acta Mol Basis Dis. 2021. PMID: 33862145 Free PMC article.
-
Quantification of urinary podocyte-derived migrasomes for the diagnosis of kidney disease.J Extracell Vesicles. 2024 Jun;13(6):e12460. doi: 10.1002/jev2.12460. J Extracell Vesicles. 2024. PMID: 38853287 Free PMC article.
-
Podocyte injury and its consequences.Kidney Int. 2016 Jun;89(6):1221-30. doi: 10.1016/j.kint.2016.01.012. Epub 2016 Mar 19. Kidney Int. 2016. PMID: 27165817 Review.
-
Dipping your feet in the water: podocytes in urine.Expert Rev Mol Diagn. 2014 May;14(4):423-37. doi: 10.1586/14737159.2014.908122. Epub 2014 Apr 11. Expert Rev Mol Diagn. 2014. PMID: 24724555 Review.
Cited by
-
Migrasomes: From Biogenesis, Release, Uptake, Rupture to Homeostasis and Diseases.Oxid Med Cell Longev. 2022 Apr 14;2022:4525778. doi: 10.1155/2022/4525778. eCollection 2022. Oxid Med Cell Longev. 2022. PMID: 35464764 Free PMC article. Review.
-
Migrasomes, critical players in intercellular communication.Cancer Cell Int. 2025 Mar 25;25(1):113. doi: 10.1186/s12935-025-03754-6. Cancer Cell Int. 2025. PMID: 40134020 Free PMC article. Review.
-
Migrasome: a new functional extracellular vesicle.Cell Death Discov. 2023 Oct 18;9(1):381. doi: 10.1038/s41420-023-01673-x. Cell Death Discov. 2023. PMID: 37852963 Free PMC article. Review.
-
Podocyte-specific proteins in urinary extracellular vesicles of patients with IgA nephropathy: Vasorin and ceruloplasmin.Bioimpacts. 2024;14(3):29981. doi: 10.34172/bi.2023.29981. Epub 2023 Oct 31. Bioimpacts. 2024. PMID: 38938751 Free PMC article.
-
Research progress of migrasomes: from genesis to formation, physiology to pathology.Front Cell Dev Biol. 2024 Aug 14;12:1420413. doi: 10.3389/fcell.2024.1420413. eCollection 2024. Front Cell Dev Biol. 2024. PMID: 39206093 Free PMC article. Review.
References
REFERENCES
-
- Abe, H., Sakurai, A., Ono, H., Hayashi, S., Yoshimoto, S., Ochi, A., Ueda, S., Nishimura, K., Shibata, E., Tamaki, M., Kishi, F., Kishi, S., Murakami, T., Nagai, K., & Doi, T. (2018). Urinary exosomal mRNA of WT1 as diagnostic and prognostic biomarker for diabetic nephropathy. The Journal of Medical Investigation, 65(3.4), 208-215. https://doi.org/10.2152/jmi.65.208
-
- Ayers, L., Nieuwland, R., Kohler, M., Kraenkel, N., Ferry, B., & Leeson, P. (2015). Dynamic microvesicle release and clearance within the cardiovascular system: Triggers and mechanisms. Clinical Science, 129(11), 915-931. https://doi.org/10.1042/cs20140623
-
- Barutta, F., Tricarico, M., Corbelli, A., Annaratone, L., Pinach, S., Grimaldi, S., Bruno, G., Cimino, D., Taverna, D., Deregibus, M. C., Rastaldi, M. P., Pervin, P. C., & Gruden, G. (2013). Urinary exosomal microRNAs in incipient diabetic nephropathy. PLOS One, 8(11):e73798. https://doi.org/10.1371/journal.pone.0073798
-
- Burger, D., Thibodeau, J. F., Holterman, C. E., Burns, K. D., Touyz, R. M., & Kennedy, C. R. (2014). Urinary podocyte microparticles identify prealbuminuric diabetic glomerular injury. Journal of the American Society of Nephrology, 25(7), 1401-1407. https://doi.org/10.1681/asn.2013070763
-
- Cechova, S., Dong, F., Chan, F., Kelley, M. J., Ruiz, P., & Le, T. H. (2018). MYH9 E1841K mutation augments proteinuria and podocyte injury and migration. Journal of the American Society of Nephrology, 29(1), 155-167. https://doi.org/10.1681/asn.2015060707
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical