Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis
- PMID: 34652045
- PMCID: PMC9299503
- DOI: 10.1002/anie.202109384
Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis
Abstract
The medically important bacterial aromatic polyketide natural products typically feature a planar, polycyclic core structure. An exception is found for the rubromycins, whose backbones are disrupted by a bisbenzannulated [5,6]-spiroketal pharmacophore that was recently shown to be assembled by flavin-dependent enzymes. In particular, a flavoprotein monooxygenase proved critical for the drastic oxidative rearrangement of a pentangular precursor and the installment of an intermediate [6,6]-spiroketal moiety. Here we provide structural and mechanistic insights into the control of catalysis by this spiroketal synthase, which fulfills several important functions as reductase, monooxygenase, and presumably oxidase. The enzyme hereby tightly controls the redox state of the substrate to counteract shunt product formation, while also steering the cleavage of three carbon-carbon bonds. Our work illustrates an exceptional strategy for the biosynthesis of stable chroman spiroketals.
Keywords: antibiotics; collinone; lenticulone; polyketide synthase; redox tailoring.
© 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
An acetyltransferase controls the metabolic flux in rubromycin polyketide biosynthesis by direct modulation of redox tailoring enzymes.Chem Sci. 2022 May 17;13(24):7157-7164. doi: 10.1039/d2sc01952c. eCollection 2022 Jun 22. Chem Sci. 2022. PMID: 35799824 Free PMC article.
-
Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations.J Biol Chem. 2020 Apr 3;295(14):4709-4722. doi: 10.1074/jbc.RA119.011212. Epub 2020 Feb 28. J Biol Chem. 2020. PMID: 32111738 Free PMC article.
-
Cleavage of four carbon-carbon bonds during biosynthesis of the griseorhodin a spiroketal pharmacophore.J Am Chem Soc. 2009 Feb 18;131(6):2297-305. doi: 10.1021/ja807827k. J Am Chem Soc. 2009. PMID: 19175308
-
The binding modes of quinones in flavoprotein oxidoreductases.Arch Biochem Biophys. 2025 Aug;770:110443. doi: 10.1016/j.abb.2025.110443. Epub 2025 May 2. Arch Biochem Biophys. 2025. PMID: 40320059 Review.
-
Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis.Arch Biochem Biophys. 2010 Jan 1;493(1):53-61. doi: 10.1016/j.abb.2009.06.018. Epub 2009 Jul 3. Arch Biochem Biophys. 2010. PMID: 19577534 Review.
Cited by
-
Genome-mining-guided discovery of coumarubrin: A novel aminocoumarin-substituted rubromycin antibiotic.J Ind Microbiol Biotechnol. 2024 Dec 31;52:kuaf018. doi: 10.1093/jimb/kuaf018. J Ind Microbiol Biotechnol. 2024. PMID: 40613864 Free PMC article.
-
A highly efficient heterologous expression platform to facilitate the production of microbial natural products in Streptomyces.Microb Cell Fact. 2025 May 14;24(1):105. doi: 10.1186/s12934-025-02722-z. Microb Cell Fact. 2025. PMID: 40369635 Free PMC article.
-
An acetyltransferase controls the metabolic flux in rubromycin polyketide biosynthesis by direct modulation of redox tailoring enzymes.Chem Sci. 2022 May 17;13(24):7157-7164. doi: 10.1039/d2sc01952c. eCollection 2022 Jun 22. Chem Sci. 2022. PMID: 35799824 Free PMC article.
-
Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products.Chem Sci. 2024 Apr 24;15(20):7749-7756. doi: 10.1039/d4sc01715c. eCollection 2024 May 22. Chem Sci. 2024. PMID: 38784727 Free PMC article.
-
Biochemical and structural insights of multifunctional flavin-dependent monooxygenase FlsO1-catalyzed unexpected xanthone formation.Nat Commun. 2022 Sep 14;13(1):5386. doi: 10.1038/s41467-022-33131-0. Nat Commun. 2022. PMID: 36104338 Free PMC article.
References
-
- Yunt Z., Reinhardt K., Li A., Engeser M., Dahse H.-M., Gütschow M., Bruhn T., Bringmann G., Piel J., J. Am. Chem. Soc. 2009, 131, 2297. - PubMed
-
- Li A., Piel J., Chem. Biol. 2002, 9, 1017. - PubMed
-
- Lackner G., Schenk A., Xu Z., Reinhardt K., Yunt Z. S., Piel J., Hertweck C., J. Am. Chem. Soc. 2007, 129, 9306. - PubMed
-
- Ueno T., Takahashi H., Oda M., Mizunuma M., Yokoyama A., Goto Y., Mizushina Y., Sakaguchi K., Hayashi H., Biochemistry 2000, 39, 5995. - PubMed
-
- Martin R., Sterner O., Alvarez M. A., de Clercq E., Bailey J. E., Minas W., J. Antibiot. 2001, 54, 239. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources