Long Noncoding-RNA Component of Mitochondrial RNA Processing Endoribonuclease Promotes Carcinogenesis in Triple-Negative Breast Cancer Cells via the Competing Endogenous RNA Mechanism
- PMID: 34652079
- PMCID: PMC8561136
- DOI: 10.4048/jbc.2021.24.e42
Long Noncoding-RNA Component of Mitochondrial RNA Processing Endoribonuclease Promotes Carcinogenesis in Triple-Negative Breast Cancer Cells via the Competing Endogenous RNA Mechanism
Abstract
Purpose: Triple-negative breast cancer (TNBC) is a subtype of breast cancer. Increasing evidence supports that dysregulation of long noncoding RNAs (lncRNAs) plays a vital role in cancer progression. RNA component of mitochondrial RNA processing endoribonuclease (RMRP), a lncRNA, is characterized as a tumor-propeller in some cancers, but its mechanism in TNBC remains poorly understood. This study aimed to determine whether and how RMRP functions in TNBC.
Methods: Cell proliferation was determined by cell counting kit-8 (CCK-8) and colony formation assays and cell apoptosis by flow cytometry analysis and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. Cell migration and invasion were determined by transwell assays. RNA-binding protein immunoprecipitation (RIP), luciferase reporter, and RNA pulldown assays were implemented to assess the interaction of RMRP with other molecules in TNBC cells.
Results: RMRP expression was elevated in TNBC cells. RMRP knockdown repressed cell proliferation, migration, and invasion, but induced apoptosis in TNBC. In addition, RMRP was found to target microRNA-766-5p (miR-766-5p) in TNBC cells. Silencing miR-766-5p enhanced cell viability and decreased apoptosis, whereas miR-766-5p overexpression had opposite effects. Furthermore, miR-766-5p was found to bind to yes-associated protein 1 (YAP1). Moreover, miR-766-5p inhibition reversed the repressive effect of RMRP knockdown on the malignant progression of TNBC.
Conclusion: The present study manifested that RMRP promotes the growth, migration, and invasion of TNBC cells via the miR-766-5p/YAP1 axis. These findings provide novel perspectives for TNBC treatment.
Keywords: Breast neoplasms; MicroRNAs; RNA, untranslated; Triple negative breast neoplasms.
© 2021 Korean Breast Cancer Society.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures
References
-
- Peart O. Breast intervention and breast cancer treatment options. Radiol Technol. 2015;86:535M–558M. - PubMed
-
- Hwang SY, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther. 2019;199:30–57. - PubMed
-
- Zhang M, Wu WB, Wang ZW, Wang XH. lncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT. Eur Rev Med Pharmacol Sci. 2017;21:1020–1026. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
