Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep:238:113859.
doi: 10.1016/j.ijheh.2021.113859. Epub 2021 Oct 14.

Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters

Affiliations

Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters

Prasert Makkaew et al. Int J Hyg Environ Health. 2021 Sep.

Abstract

Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are pollutants of worldwide concern that threaten human health and ecosystems. Anthropogenic activities and wastewater could be ARB and ARG pollution sources; however, research on ARG abundance and microbial source tracking (MST) of contamination in tropical marine waters is limited. This study examined spatiotemporal variations of six ARGs (blaNDM, blaTEM, blaVIM, mcr-1, sul1, and tetQ) against the widely used antibiotic groups and a class 1 integron-integrase gene (intI1) at two Thai tropical recreational beaches (n = 41). Correlations between ARGs and sewage-specific MST markers (i.e., crAssphage and human polyomaviruses [HPyVs]) and fecal indicator bacteria (i.e., total coliforms, fecal coliforms, and enterococci) were also investigated. BlaTEM, intI1, sul1, and tetQ were ubiquitous at both beaches (85.4-100% detection rate); intI1 was the most abundant (3-6 orders in log10 copies/100 mL), followed by blaTEM (2-4 orders), sul1 (2-3 orders), and tetQ (2-4 orders). BlaNDM was found in 7.3% (up to 4 orders), and no mcr-1 was detected. Interestingly, blaVIM was prevalent at one beach (2-5 orders; n = 17), but found in only one sample at the other (4 orders). Temporal, but not spatial, differences were noticed; blaTEM was at higher levels in the wet season. IntI1 correlated with sul1 and tetQ (Spearman's rho = 0.47-0.97), suggesting potential horizontal gene transfer. CrAssphage, but not HPyVs, correlated with intI1, sul1, and tetQ (Spearman's rho = 0.50-0.74). Higher numbers of ARGs tended to co-occur in samples with higher crAssphage concentrations, implying sewage contribution to the marine water, with a persisting ARG background. This study provides insight into the ARG pollution status of tropical coastal waters and suggests crAssphage as a proxy for ARG pollution, which could facilitate effective management policies to minimize ARG dissemination in marine environments.

Keywords: Antibiotic resistance genes; Fecal pollution; Microbial source tracking; Quantitative PCR; Seawater; Southeast asia; crAssphage.

PubMed Disclaimer

Publication types

LinkOut - more resources