Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov 4;57(88):11591-11603.
doi: 10.1039/d1cc05202k.

Atomically dispersed metal catalysts on nanodiamond and its derivatives: synthesis and catalytic application

Affiliations
Review

Atomically dispersed metal catalysts on nanodiamond and its derivatives: synthesis and catalytic application

Xiaowen Chen et al. Chem Commun (Camb). .

Abstract

Atomically dispersed metal catalysts (ADMCs) have attracted increasing interest in the field of heterogeneous catalysis. As sub-nanometric catalysts, ADMCs have exhibited remarkable catalytic performance in many reactions. ADMCs are classified into two categories: single atom catalysts (SACs) and atomically dispersed clusters with a few atoms. To stabilize the highly active ADMCs, nanodiamond (ND) and its derivatives (NDDs) are promising supports. In this Feature Article, we have introduced the advantages of NDDs with a highly curved surface and tunable surface properties. The controllable defective sites and oxygen functional groups are known as the anchoring sites for ADMCs. Tunable surface acid-base properties enable ADMCs supported on NDDs to exhibit unique selectivity towards target products and an extended lifetime in many reactions. In addition, we have firstly overviewed the recent advances in the synthesis strategies for effectively fabricating ADMCs on NDDs, and further discussed how to achieve the atomic dispersion of metal precursors and stabilize the as-formed metal atoms against migration and agglomeration based on NDDs. And then, we have also systematically summarized the advantages of ADMCs supported on NDDs in reactions, including hydrogenation, dehydrogenation, aerobic oxidation and electrochemical reaction. These reactions can also effectively guide the design of ADMCs. The recent progress in understanding the effect of structure of active centers and metal-support interactions (MSIs) on the catalytic performance of ADMCs is particularly highlighted. At last, the possible research directions in ADMCs are forecasted.

PubMed Disclaimer

LinkOut - more resources