Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 Oct;19(5):705-723.
doi: 10.2166/wh.2021.112.

Prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in wastewater: a systematic review and meta-analysis

Affiliations
Meta-Analysis

Prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in wastewater: a systematic review and meta-analysis

Nawel Zaatout et al. J Water Health. 2021 Oct.

Abstract

Wastewater is considered a hotspot niche of multi-drug and pathogenic bacteria such as Enterobacteriaceae-producing extended-spectrum beta-lactamases (ESBL-E). Thus, the aim of this meta-analysis was to evaluate the prevalence of ESBL-E in different wastewater sources. Different databases (Medline, EMBASE, and Cochrane Library) were searched from inception to March 2021. Data were analyzed using random-effects modeling, and subgroup and meta-regression analyses were used to ascertain heterogeneity among the subgroups. Fifty-seven observational studies were selected, and the pooled prevalence of ESBL-E in wastewater was 24.81% (95% CI, 19.28-30.77). Escherichia coli had the highest ESBL prevalence. The blaCTX-M genes were the most prevalent in the selected studies (66.56%). The pooled prevalence of ESBL was significantly higher in reports from America (39.91%, 95% CI, 21.82-59.51) and reports studying hospital and untreated wastewaters (33.98%, 95% CI, 23.82-44.91 and 27.36%, 95% CI, 19.12-36.42). Overall, this meta-analysis showed that the prevalence of ESBL-E in wastewater is increasing over time and that hospital wastewater is the most important repository of ESBL-E. Therefore, there is a need for developing new sewage treatment systems that decrease the introduction of resistant bacteria and antibiotic residues.

PubMed Disclaimer

LinkOut - more resources