Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 8;22(11):4691-4700.
doi: 10.1021/acs.biomac.1c00974. Epub 2021 Oct 20.

Model for the Temperature-Induced Conformational Change in Xanthan Polysaccharide

Affiliations

Model for the Temperature-Induced Conformational Change in Xanthan Polysaccharide

Gary E Washington et al. Biomacromolecules. .

Abstract

Xanthan is an extracellular bacterial polysaccharide. It is manufactured commercially by fermentation of Xanthomonas campestris and used extensively in food and other industries to control the viscosity and texture of various products. Its useful properties stem from its occurrence both as a relatively rigid double-helical polymer and as a branched polymer network presumably crosslinked by the same noncovalent interactions that stabilize the double-helical form. Interconversion of these two forms can be achieved through heating and cooling processes. This paper describes a model for this thermally induced transformation under conditions of very dilute aqueous polymer concentration, where the characteristics of double-helical and crosslinked aggregates can be studied experimentally using light scattering. Because xanthan is a regularly repeating copolymer, there is no requirement for specific registration of the two strands of the duplex structure as is required in naturally occurring nucleic acid double helices. Here, we demonstrate the important role of the resulting xanthan structural degeneracy in dictating the characteristics of the temperature-induced conformational transition.

PubMed Disclaimer

Publication types

LinkOut - more resources