Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar 23;39(3):703-728.
doi: 10.1039/d1np00054c.

Anthraquinone-fused enediynes: discovery, biosynthesis and development

Affiliations
Review

Anthraquinone-fused enediynes: discovery, biosynthesis and development

Xiaohui Yan. Nat Prod Rep. .

Abstract

Covering: up to the end of July, 2021Anthraquinone-fused enediynes (AFEs) are a subfamily of enediyne natural products. Dynemicin A (DYN A), the first member of the AFE family, was discovered more than thirty years ago. Subsequently, extensive studies have been reported on the mode of action and the interactions of AFEs with DNA using DYN A as a model. However, progress in the discovery, biosynthesis and clinical development of AFEs has been limited for a long time. In the past five years, four new AFEs have been discovered and significant progress has been made in the biosynthesis of AFEs, especially on the biogenesis of the anthraquinone moiety and their tailoring steps. Moreover, the streamlined total synthesis of AFEs and their analogues boosts the preparation of AFE-based linker-drugs, thus enabling the development of AFE-based antibody-drug conjugates (ADCs). This review summarizes the discovery, mechanism of action, biosynthesis, total synthesis and preclinical studies of AFEs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources