Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 1;133(5):1140-1151.
doi: 10.1213/ANE.0000000000005665.

Anesthetic Effects on the Progression of Parkinson Disease in the Rat DJ-1 Model

Affiliations

Anesthetic Effects on the Progression of Parkinson Disease in the Rat DJ-1 Model

Daniel A Xu et al. Anesth Analg. .

Abstract

Background: Parkinson disease is a chronic and progressive movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The causes of Parkinson disease are not clear but may involve genetic susceptibilities and environmental factors. As in other neurodegenerative disorders, individuals predisposed to Parkinson disease may have an accelerated onset of symptoms following perioperative stress such as anesthesia, surgery, pain, and inflammation. We hypothesized that anesthesia alone accelerates the onset of Parkinson disease-like pathology and symptoms.

Methods: A presymptomatic Parkinson rat model (the protein, DJ-1, encoded by the Park7 gene [DJ-1], PARK7 knockout) was exposed to a surgical plane of isoflurane or 20% oxygen balanced with nitrogen for 2 hours on 3 occasions between 6 and 7 months of age. Acute and long-term motor and neuropathological effects were examined from 7 to 12 months of age in male DJ-1 rats, using the ladder rung, rotarod, and novel object recognition assays, as well as the immunohistochemical localization of tyrosine hydroxylase in dopaminergic neurons in the substantia nigra and ionized calcium-binding adaptor protein-1 (Iba-1) microglial activation in the substantia nigra and hippocampus.

Results: In the acute group, after the third anesthetic exposure at 7 months of age, the isoflurane group had a significant reduction in the density of dopaminergic neurons in the SNpc compared to controls. However, this reduction was not associated with increased microglial activation in the hippocampus or substantia nigra. With the ladder rung motor skills test, there was no effect of anesthetic exposure on the total number of foot faults or the ladder rung pattern in the acute group. The rotarod test also detected no differences before and after the third exposure in controls. For the long-term group, immunohistochemical analyses detected no differences in the density of dopaminergic neurons or microglial cells compared to unexposed DJ-1 rats from 8 to 12 months of age. The ladder rung test in the long-term group showed no differences in the total number of foot faults with time and exposure or between ladder rung patterns. The rotarod test detected no significant effect of exposure with time or between groups at any time point. The novel object recognition task in the long-term group revealed no differences in short- or long-term memory or in the number of rearings as a function of exposure.

Conclusions: Multiple isoflurane exposures in this rat model of Parkinson disease transiently enhanced dopaminergic neurodegeneration in the SNpc that resolved over time and had no effects on progression in this Parkinson disease-like phenotype.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Comment in

References

    1. Eckenhoff RG, Johansson JS, Wei H, et al. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology. 2004;101:703–709.
    1. Dong Y, Wu X, Xu Z, Zhang Y, Xie Z. Anesthetic isoflurane increases phosphorylated tau levels mediated by caspase activation and Aβ generation. PLoS One. 2012;7:e39386.
    1. Zhang Y, Xu Z, Wang H, et al. Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol. 2012;71:687–698.
    1. Lin D, Cao L, Wang Z, Li J, Washington JM, Zuo Z. Lidocaine attenuates cognitive impairment after isoflurane anesthesia in old rats. Behav Brain Res. 2012;228:319–327.
    1. Wei H. The role of calcium dysregulation in anesthetic-mediated neurotoxicity. Anesth Analg. 2011;113:972–974.

Publication types

MeSH terms