Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 9;50(43):15655-15668.
doi: 10.1039/d1dt02255e.

Effect of chirality on the anticancer activity of Pt(II) and Pt(IV) complexes containing 1 R,2 R and 1 S,2 S enantiomers of the trans-1,2-diamino-4-cyclohexene ligand (DACHEX), an analogue of diaminocyclohexane used in oxaliplatin

Affiliations

Effect of chirality on the anticancer activity of Pt(II) and Pt(IV) complexes containing 1 R,2 R and 1 S,2 S enantiomers of the trans-1,2-diamino-4-cyclohexene ligand (DACHEX), an analogue of diaminocyclohexane used in oxaliplatin

Paride Papadia et al. Dalton Trans. .

Abstract

Six enantiomerically pure, oxaliplatin-like, platinum compounds (two platinum(II) and four platinum(IV)), all containing unsaturated cyclic diamine trans-1,2-diamino-4-cyclohexene (DACHEX) as a substitute for the trans-1,2-diaminocyclohexane used in oxaliplatin, were investigated. The complexes were characterized by elemental analyses, ESI-MS, and 1H-NMR spectroscopy. For the four Pt(IV) complexes the electrochemical redox behaviour, investigated by cyclic voltammetry, showed that all complexes possess reduction potentials suitable for activation in vivo. The antiproliferative activity was assessed in vitro on human cancer cell lines, also selected for resistance to platinum-based drugs or belonging to the MultiDrug-Resistant (MDR) phenotype. All complexes exhibited antiproliferative activity superior to that of cisplatin and almost equivalent to or better than that of oxaliplatin; moreover, most complexes were also capable of overcoming both the cisplatin- and the oxaliplatin-resistance. By comparing the effectiveness of the enantiomerically pure compounds with the racemic one, the R,R enantiomer emerged as the most effective in the case of Pt(II) complexes whereas the S,S enantiomer was the most effective in the case of the Pt(IV) derivatives. From the results obtained also against 3D spheroid tumor models, cis,trans,cis-[Pt(OXA)(OBz)2(1S,2S-DACHEX)] (OBz = benzoate) emerged as the most promising candidate for further preclinical investigation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources