Cerebral derailment after myocardial infarct: mechanisms and effects of the signaling from the ischemic heart to brain
- PMID: 34674004
- PMCID: PMC8724191
- DOI: 10.1007/s00109-021-02154-3
Cerebral derailment after myocardial infarct: mechanisms and effects of the signaling from the ischemic heart to brain
Abstract
Myocardial infarction (MI) is the leading cause of death among ischemic heart diseases and is associated with several long-term cardiovascular complications, such as angina, re-infarction, arrhythmias, and heart failure. However, MI is frequently accompanied by non-cardiovascular multiple comorbidities, including brain disorders such as stroke, anxiety, depression, and cognitive impairment. Accumulating experimental and clinical evidence suggests a causal relationship between MI and stroke, but the precise underlying mechanisms have not yet been elucidated. Indeed, the risk of stroke remains a current challenge in patients with MI, in spite of the improvement of medical treatment among this patient population has reduced the risk of stroke. In this review, the effects of the signaling from the ischemic heart to the brain, such as neuroinflammation, neuronal apoptosis, and neurogenesis, and the possible actors mediating these effects, such as systemic inflammation, immunoresponse, extracellular vesicles, and microRNAs, are discussed.
Keywords: EVs; Myocardial infarct; Neuroinflammation; Stroke; miRNAs.
© 2021. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
Extracellular vesicles enriched with miR-150 released by macrophages regulates the TP53-IGF-1 axis to alleviate myocardial infarction.Am J Physiol Heart Circ Physiol. 2021 Mar 1;320(3):H969-H979. doi: 10.1152/ajpheart.00304.2020. Epub 2020 Nov 8. Am J Physiol Heart Circ Physiol. 2021. Retraction in: Am J Physiol Heart Circ Physiol. 2021 Apr 1;320(4):H1657. doi: 10.1152/ajpheart.00304.2020_RET. PMID: 33164579 Retracted.
-
Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction.J Am Coll Cardiol. 2018 Jan 23;71(3):263-275. doi: 10.1016/j.jacc.2017.11.024. J Am Coll Cardiol. 2018. PMID: 29348018
-
Lgr4 Governs a Pro-Inflammatory Program in Macrophages to Antagonize Post-Infarction Cardiac Repair.Circ Res. 2020 Sep 25;127(8):953-973. doi: 10.1161/CIRCRESAHA.119.315807. Epub 2020 Jun 30. Circ Res. 2020. PMID: 32600176
-
The emerging role of miRNAs in myocardial infarction: From molecular signatures to therapeutic targets.Pathol Res Pract. 2024 Jan;253:155087. doi: 10.1016/j.prp.2023.155087. Epub 2024 Jan 3. Pathol Res Pract. 2024. PMID: 38183820 Review.
-
Lymphocytes at the Heart of Wound Healing.Adv Exp Med Biol. 2017;1003:225-250. doi: 10.1007/978-3-319-57613-8_11. Adv Exp Med Biol. 2017. PMID: 28667561 Review.
Cited by
-
Impact of Myocardial Infarction on Cerebral Homeostasis: Exploring the Protective Role of Estrogen.J Cardiovasc Aging. 2025 Jun;5(2):13. doi: 10.20517/jca.2025.02. Epub 2025 Jun 29. J Cardiovasc Aging. 2025. PMID: 40741133 Free PMC article.
-
Exosomes as Vehicles for Noncoding RNA in Modulating Inflammation: A Promising Regulatory Approach for Ischemic Stroke and Myocardial Infarction.J Inflamm Res. 2024 Oct 21;17:7485-7501. doi: 10.2147/JIR.S484119. eCollection 2024. J Inflamm Res. 2024. PMID: 39464334 Free PMC article. Review.
-
Network pharmacology-based and experimental identification of the effects of Renshen Yangrong decoction on myocardial infarction.Front Pharmacol. 2022 Oct 25;13:1010036. doi: 10.3389/fphar.2022.1010036. eCollection 2022. Front Pharmacol. 2022. PMID: 36386237 Free PMC article.
-
The Brain-Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease.Curr Cardiol Rep. 2023 Dec;25(12):1745-1758. doi: 10.1007/s11886-023-01990-8. Epub 2023 Nov 23. Curr Cardiol Rep. 2023. PMID: 37994952 Free PMC article. Review.
-
Spinal cord astrocytes regulate myocardial ischemia-reperfusion injury.Basic Res Cardiol. 2022 Nov 11;117(1):56. doi: 10.1007/s00395-022-00968-x. Basic Res Cardiol. 2022. PMID: 36367592 Free PMC article.
References
-
- Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J (2017) Brain–heart interaction. Circ Res [Internet]. 121:451–68. Available from: https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.117.311170 - DOI - PMC - PubMed
-
- Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL et al (2018) Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol [Internet]. 71:263–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0735109717416408 - PubMed
-
- Battaglini D, Robba C, Lopes da Silva A, dos Santos Samary C, Leme Silva P, Dal Pizzol F et al (2020) Brain–heart interaction after acute ischemic stroke. Crit Care [Internet]. 24:163. Available from: https://ccforum.biomedical.com/articles/10.1186/s13054-020-02885-8 - DOI - PMC - PubMed
-
- Natelson BH (1985) Neurocardiology. Arch Neurol [Internet]. 42:178. Available from: https://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneur.1985.... - PubMed
-
- Kaplan A, Yabluchanskiy A, Ghali R, Altara R, Booz GW, Zouein FA (2018) Cerebral blood flow alteration following acute myocardial infarction in mice. Biosci Rep [Internet]. 38. Available from: https://portlandpress.com/bioscirep/article/doi/10.1042/BSR20180382/8870... - DOI - PMC - PubMed