Regulation of cancer progression by circRNA and functional proteins
- PMID: 34676546
- DOI: 10.1002/jcp.30608
Regulation of cancer progression by circRNA and functional proteins
Abstract
Circular RNAs (circRNAs) are closed back-splicing products of precursor mRNA in eukaryotes. Compared with linear mRNAs, circRNAs have a special structure and stable expression. A large number of studies have provided different regulatory mechanisms of circRNAs in tumors. Challenges exist in understanding the control of circRNAs because of their sequence overlap with linear mRNA. Here, we survey the most recent progress regarding the regulation of circRNA biogenesis by RNA-binding proteins, one of the vital functional proteins. Furthermore, substantial circRNAs exert compelling biological roles by acting as protein sponges, by being translated themselves or regulating posttranslational modifications of proteins. This review will help further explore more types of functional proteins that interact with circRNA in cancer and reveal other unknown mechanisms of circRNA regulation.
Keywords: RNA-binding proteins (RBPs); biogenesis; cancer progression; circular RNAs (circRNAs); functional proteins.
© 2021 Wiley Periodicals LLC.
Similar articles
-
The Biogenesis, Functions, and Challenges of Circular RNAs.Mol Cell. 2018 Aug 2;71(3):428-442. doi: 10.1016/j.molcel.2018.06.034. Epub 2018 Jul 26. Mol Cell. 2018. PMID: 30057200 Review.
-
Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression.Genome Med. 2020 Dec 7;12(1):112. doi: 10.1186/s13073-020-00812-8. Genome Med. 2020. PMID: 33287884 Free PMC article.
-
An autoregulation loop in fust-1 for circular RNA regulation in Caenorhabditis elegans.Genetics. 2021 Nov 5;219(3):iyab145. doi: 10.1093/genetics/iyab145. Genetics. 2021. PMID: 34740247 Free PMC article.
-
Translation and functional roles of circular RNAs in human cancer.Mol Cancer. 2020 Feb 15;19(1):30. doi: 10.1186/s12943-020-1135-7. Mol Cancer. 2020. PMID: 32059672 Free PMC article. Review.
-
Circular RNA-protein interactions: functions, mechanisms, and identification.Theranostics. 2020 Feb 10;10(8):3503-3517. doi: 10.7150/thno.42174. eCollection 2020. Theranostics. 2020. PMID: 32206104 Free PMC article. Review.
Cited by
-
Circular RNA ZFR promotes cell cycle arrest and apoptosis of colorectal cancer cells via the miR-147a/CACUL1 axis.J Gastrointest Oncol. 2022 Aug;13(4):1793-1804. doi: 10.21037/jgo-22-672. J Gastrointest Oncol. 2022. PMID: 36092343 Free PMC article.
-
Circular RNA circATP9A promotes non-small cell lung cancer progression by interacting with HuR and by promoting extracellular vesicles-mediated macrophage M2 polarization.J Exp Clin Cancer Res. 2023 Dec 5;42(1):330. doi: 10.1186/s13046-023-02916-6. J Exp Clin Cancer Res. 2023. PMID: 38049814 Free PMC article.
-
Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer.Noncoding RNA. 2024 Sep 30;10(5):51. doi: 10.3390/ncrna10050051. Noncoding RNA. 2024. PMID: 39452837 Free PMC article. Review.
-
Emerging Role and Mechanism of circRNAs in Pediatric Malignant Solid Tumors.Front Genet. 2022 Jan 18;12:820936. doi: 10.3389/fgene.2021.820936. eCollection 2021. Front Genet. 2022. PMID: 35116058 Free PMC article. Review.
-
Tumor-associated macrophages derived exosomal circPLK1 promotes resistance to EGFR inhibitor osimertinib in non-small cell lung cancer.Discov Oncol. 2025 Jul 1;16(1):1196. doi: 10.1007/s12672-025-03025-w. Discov Oncol. 2025. PMID: 40591172 Free PMC article.
References
REFERENCES
-
- Abdelmohsen, K., Panda, A. C., Munk, R., Grammatikakis, I., Dudekula, D. B., De, S., Kim, J., Noh, J. H., Kim, K. M., Martindale, J. L., & Gorospe, M. (2017). Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biology, 14(3), 361-369.
-
- Abudayyeh, O. O., Gootenberg, J. S., Essletzbichler, P., Han, S., Joung, J., Belanto, J. J., Verdine, V., Cox, D. B. T., Kellner, M. J., Regev, A., Lander, E. S., Voytas, D. F., Ting, A. Y., & Zhang, F. (2017). RNA targeting with CRISPR-Cas13. Nature, 550(7675), 280-284. https://doi.org/10.1038/nature24049
-
- An, X., Sarmiento, C., Tan, T., & Zhu, H. (2017). Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharmaceutica Sinica B, 7(1), 38-51. https://doi.org/10.1016/j.apsb.2016.09.002
-
- Asghar, U., Witkiewicz, A. K., Turner, N. C., & Knudsen, E. S. (2015). The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature Reviews Drug Discovery, 14(2), 130-146.
-
- Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., & Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 56(1), 55-66.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical