Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Dec;12(6):1380-1392.
doi: 10.1002/jcsm.12839. Epub 2021 Oct 21.

Effects of hormonal changes on sarcopenia in chronic kidney disease: where are we now and what can we do?

Affiliations
Review

Effects of hormonal changes on sarcopenia in chronic kidney disease: where are we now and what can we do?

Ozkan Gungor et al. J Cachexia Sarcopenia Muscle. 2021 Dec.

Abstract

Sarcopenia or muscle wasting is a progressive and generalized skeletal muscle disorder involving the accelerated loss of muscle mass and function, often associated with muscle weakness (dynapenia) and frailty. Whereas primary sarcopenia is related to ageing, secondary sarcopenia happens independent of age in the context of chronic disease states such as chronic kidney disease (CKD). Sarcopenia has become a major focus of research and public policy debate due to its impact on patient's health-related quality of life, health-care expenditure, morbidity, and mortality. The development of sarcopenia in patients with CKD is multifactorial and it may occur independently of weight loss or cachexia including under obese sarcopenia. Hormonal imbalances can facilitate the development of sarcopenia in the general population and is a common finding in CKD. Hormones that may influence the development of sarcopenia are testosterone, growth hormone, insulin, thyroid hormones, and vitamin D. Although the relationship between free testosterone level that is low in uraemic patients and sarcopenia in CKD is not well-defined, functional improvement may be seen. Unlike testosterone, it is known that vitamin D is associated with muscle strength, muscle size, and physical performance in patients with CKD. Outcomes after vitamin D replacement therapy are still controversial. The half-life of growth hormone (GH) is prolonged in patients with CKD. Besides, IGF-1 levels are normal in patients with Stage 4 CKD-a minimal reduction is seen in the end-stage renal disease. Unresponsiveness or resistance of IGF-1 and changes in the GH/IGF-1 axis are the main causes of sarcopenia in CKD. Low serum T3 level is frequent in CKD, but the net effect on sarcopenia is not well-studied. CKD patients develop insulin resistance (IR) from the earliest period even before GFR decline begins. IR reduces glucose utilization as an energy source by hepatic gluconeogenesis, decreasing muscle glucose uptake, impairing intracellular glucose metabolism. This cascade results in muscle protein breakdown. IR and sarcopenia might also be a new pathway for targeting. Ghrelin, oestrogen, cortisol, and dehydroepiandrosterone may be other players in the setting of sarcopenia. In this review, we mainly examine the effects of hormonal changes on the occurrence of sarcopenia in patients with CKD via the available data.

Keywords: COVID-19; Cachexia; Chronic kidney disease; Hormones; Sarcopenia.

PubMed Disclaimer

Conflict of interest statement

S. D. A. reports receiving fees from Abbott, Bayer, Boehringer Ingelheim, Cardiac Dimension, Cordio, Impulse Dynamics, Novartis, Occlutech, Servier, and Vifor Pharma, and grant support from Abbott and Vifor Pharma. K. K. Z. has received honoraria and/or support from Abbott, AbbVie, ACI Clinical (Cara Therapeutics), Akebia, Alexion, Amgen, Ardelyx, Astra‐Zeneca, Aveo, BBraun, Chugai, Cytokinetics, Daiichi, DaVita, Fresenius, Genentech, Haymarket Media, Hospira, Kabi, Keryx, Kissei, Novartis, Pfizer, Regulus, Relypsa, Resverlogix, Sandoz, Sanofi, Shire, Vifor, UpToDate, and ZS Pharma. Other authors have no competing interests to declare.

Figures

Figure 1
Figure 1
Sarcopenia: EWGSOP2 algorithm for case‐finding, diagnosis, and quantifying severity in practice. DXA, dual‐energy X‐ray absorptiometry; BIA, bioelectrical impedance analysis; CT, computed tomography; MRI, magnetic resonance imaging.
Figure 2
Figure 2
Factors affecting the development of sarcopenia in patients with chronic kidney disease.
Figure 3
Figure 3
Chronic kidney disease (CKD), testosterone deficiency, and sarcopenia.
Figure 4
Figure 4
Chronic kidney disease (CKD), vitamin D deficiency, and sarcopenia.
Figure 5
Figure 5
Factors associated with growth hormone resistance in patients with chronic kidney disease.

References

    1. Rosenberg IH. Symposium: sarcopenia: diagnosis and mechanisms sarcopenia: origins and clinical relevance. J Nutr. 1997;127:990–991. - PubMed
    1. Cruz‐Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010;39:412–423. - PMC - PubMed
    1. Anker SD, Morley JE, von Haehling S. Welcome to the ICD‐10 code for sarcopenia. J Cachexia Sarcopenia Muscle. 2016;7:512–514. - PMC - PubMed
    1. Cruz‐Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48:16–31. - PMC - PubMed
    1. Cruz‐Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014;43:48–759. - PMC - PubMed