Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Oct 13;11(10):1510.
doi: 10.3390/biom11101510.

Genetic, Environmental and Lifestyle Determinants of Accelerated Telomere Attrition as Contributors to Risk and Severity of Multiple Sclerosis

Affiliations
Review

Genetic, Environmental and Lifestyle Determinants of Accelerated Telomere Attrition as Contributors to Risk and Severity of Multiple Sclerosis

Michael Hecker et al. Biomolecules. .

Abstract

Telomeres are protective structures at the ends of linear chromosomes. Shortened telomere lengths (TL) are an indicator of premature biological aging and have been associated with a wide spectrum of disorders, including multiple sclerosis (MS). MS is a chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system. The exact cause of MS is still unclear. Here, we provide an overview of genetic, environmental and lifestyle factors that have been described to influence TL and to contribute to susceptibility to MS and possibly disease severity. We show that several early-life factors are linked to both reduced TL and higher risk of MS, e.g., adolescent obesity, lack of physical activity, smoking and vitamin D deficiency. This suggests that the mechanisms underlying the disease are connected to cellular aging and senescence promoted by increased inflammation and oxidative stress. Additional prospective research is needed to clearly define the extent to which lifestyle changes can slow down disease progression and prevent accelerated telomere loss in individual patients. It is also important to further elucidate the interactions between shared determinants of TL and MS. In future, cell type-specific studies and advanced TL measurement methods could help to better understand how telomeres may be causally involved in disease processes and to uncover novel opportunities for improved biomarkers and therapeutic interventions in MS.

Keywords: aging; disease modifiers; environment; genetics; lifestyle; multiple sclerosis; risk factors; telomere length; telomere shortening.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Common factors known to influence telomere length as well as susceptibility and course of multiple sclerosis (MS). A combination of genetic, environmental and lifestyle/behavioral factors contributes to risk and severity of MS. Shown in the outer ring are MS risk factors that have also been described to influence the shortening of telomere lengths (TL) with age. Accelerated loss of telomeric repeats, mediated by increased oxidative stress and chronic inflammation, can lead to genomic instability and altered immune cell functions. In MS, this may contribute to an abnormal response of the immune system that is directed against the central nervous system (CNS). Moreover, senescence mechanisms in CNS-specific cells may also play a role in the pathogenesis and progression of MS. It remains to be elucidated in more detail how exactly interactions between genetic and nongenetic factors may decisively shape the risk of MS in childhood/adolescence and the course of the disease in later life.

References

    1. Saretzki G. Telomeres, Telomerase and Ageing. Subcell. Biochem. 2018;90:221–308. doi: 10.1007/978-981-13-2835-0_9. - DOI - PubMed
    1. Moyzis R.K., Buckingham J.M., Cram L.S., Dani M., Deaven L.L., Jones M.D., Meyne J., Ratliff R.L., Wu J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA. 1988;85:6622–6626. doi: 10.1073/pnas.85.18.6622. - DOI - PMC - PubMed
    1. De Lange T. Shelterin: The Protein Complex That Shapes and Safeguards Human Telomeres. Genes Dev. 2005;19:2100–2110. doi: 10.1101/gad.1346005. - DOI - PubMed
    1. Levy M.Z., Allsopp R.C., Futcher A., Greider C., Harley C.B. Telomere end-replication problem and cell aging. J. Mol. Biol. 1992;225:951–960. doi: 10.1016/0022-2836(92)90096-3. - DOI - PubMed
    1. Hayflick L., Moorhead P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961;25:585–621. doi: 10.1016/0014-4827(61)90192-6. - DOI - PubMed