Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Oct 10;10(20):4640.
doi: 10.3390/jcm10204640.

The Microbiota-Gut-Brain Axis as a Key to Neuropsychiatric Disorders: A Mini Review

Affiliations
Review

The Microbiota-Gut-Brain Axis as a Key to Neuropsychiatric Disorders: A Mini Review

Katarzyna Stopińska et al. J Clin Med. .

Abstract

The central nervous system (CNS) is closely related to the gastrointestinal tract, mainly through regulating its function and homeostasis. Simultaneously, the gut flora affects the CNS and plays an essential role in the pathogenesis of neurologic and neuropsychological disorders such as Parkinson's and Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis or autism spectrum disorder. The population of gut microorganisms contains more than one billion bacteria. The most common are six phyla: Proteobacteria, Actinomyces, Verucomicrobia, Fusobacteria, and dominant Bacteroides with Firmicutes. The microbiota-gut-brain axis is a bidirectional nervous, endocrine, and immune communication between these two organs. They are connected through a variety of pathways, including the vagus nerve, the immune system, microbial metabolites such as short-chain fatty acids (SCFAs), the enteric nervous system, and hormones. Age, diet, antibiotics influence the balance of gut microorganisms and probably lead to the development of neurodegenerative disorders. In this article, a review is presented and discussed, with a specific focus on the changes of gut microbiota, gut-brain axis, related disorders, and the factors that influence gut imbalance.

Keywords: gut microbiota; neurological disorders; psychiatric disorders.

PubMed Disclaimer

Conflict of interest statement

All authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The gut microbiota–brain axis. Bidirectional communication between the gut microbiota and the central nervous system (CNS). The routes of communication involve the autonomic nervous system (ANS), the enteric nervous system (ENS) and the vagus nerve, the neuroendocrine system, the hypothalamic– pituitary–adrenal (HPA) axis, and the immune pathway.

References

    1. Thursby E., Juge N. Introduction to the human gut microbiota. Biochem. J. 2017;474:1823–1836. doi: 10.1042/BCJ20160510. - DOI - PMC - PubMed
    1. Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107. - DOI - PMC - PubMed
    1. Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E., Relman D.A. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638. doi: 10.1126/science.1110591. - DOI - PMC - PubMed
    1. Ojeda J., Ávila A., Vidal P.M. Gut Microbiota Interaction with the Central Nervous System throughout Life. J. Clin. Med. 2021;10:1299. doi: 10.3390/jcm10061299. - DOI - PMC - PubMed
    1. Spencer N.J., Hu H. Enteric nervous system: Sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 2020;17:338–351. doi: 10.1038/s41575-020-0271-2. - DOI - PMC - PubMed

LinkOut - more resources