Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis
- PMID: 34683542
- PMCID: PMC8537328
- DOI: 10.3390/ma14205951
Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis
Abstract
The increase in the number of revision surgeries after a total knee replacement surgery reaches 19%. One of the reasons for the majority of revisions relates to the debris of the ultra-high molecular weight polyethylene that serves to facilitate the sliding between the femoral and tibial components. This paper addresses the biomechanical properties of ULTEMTM 1010 in a totally new knee replacement design, based on one of the commercial models of the Stryker manufacturer. It is designed and produced through additive manufacturing that replaces the tibial component and the polyethylene in such a way as to reduce the pieces that are part of the prosthetic assembly to only two: the femoral and the tibial (the so-called "two-component knee prosthesis"). The cytotoxicity as well as the live/dead tests carried out on a series of biomaterials guarantee the best osteointegration of the studied material. The finite element simulation method guarantees the stability of the material before a load of 2000 N is applied in the bending angles 0°, 30°, 60°, 90°, and 120°. Thus, the non-metallic prosthetic material and approach represent a promising alternative for metal-allergic patients.
Keywords: ULTEMTM 1010 biomaterial; additive manufacturing; biomechanical design; live/dead; non-metallic knee prosthesis; two-component knee prosthesis.
Conflict of interest statement
The authors declare no conflict of interest.
Figures










References
-
- OECD Health at a Glance 2019: OECD Indicators. OECD Publ. 2019 doi: 10.1787/4dd50c09-en. - DOI
LinkOut - more resources
Full Text Sources