Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan:157:143-151.
doi: 10.1016/j.wneu.2021.10.114. Epub 2021 Oct 20.

Molecular Signature of Brain Arteriovenous Malformation Hemorrhage: A Systematic Review

Affiliations
Free article

Molecular Signature of Brain Arteriovenous Malformation Hemorrhage: A Systematic Review

Menno R Germans et al. World Neurosurg. 2022 Jan.
Free article

Abstract

Background: The mechanisms of brain arteriovenous malformation (bAVM) development, formation, and progress are still poorly understood. By gaining more knowledge about the molecular signature of bAVM in relation to hemorrhage, we might be able to find biomarkers associated with this serious complication, which can function as a goal for further research and can be a potential target for gene therapy.

Aims: To provide a comprehensive overview of the molecular signature of bAVM-related hemorrhage We conducted a systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, of articles published in Embase, Medline, Cochrane central, Scopus, and Chinese databases (CNKI, Wanfang).

Summary of review: Our search identified 3944 articles, of which 3108 remained after removal of duplicates. After title, abstract, and full-text screening, 31 articles were included for analysis. The results show an overview of molecular characteristics. Several genetic polymorphisms are identified that increase the risk of bAVM rupture by increasing the expression of certain inflammatory cytokines (interleukin [IL]-6, IL-17A, IL-1β, and tumor necrosis factor-α), NOTCH pathways, matrix metalloproteinase-9, and vascular endothelial growth factor-α.

Conclusions: Several molecular factors are associated with the risk of bAVM-related hemorrhage. These factors are associated with increased inflammation on the cellular level and changes in the endothelium leading to instability of the vessel wall. Further investigation of these biomarkers regarding hemorrhage rates, together with their relationship with noninvasive diagnostic methods, should be a goal of future studies to improve the patient specific risk estimation and future treatment options.

Keywords: Arteriovenous malformation; Cerebral hemorrhage; Genetic; Protein.

PubMed Disclaimer

Publication types

MeSH terms