Neural optimization: Understanding trade-offs with Pareto theory
- PMID: 34688051
- DOI: 10.1016/j.conb.2021.08.008
Neural optimization: Understanding trade-offs with Pareto theory
Abstract
Nervous systems, like any organismal structure, have been shaped by evolutionary processes to increase fitness. The resulting neural 'bauplan' has to account for multiple objectives simultaneously, including computational function, as well as additional factors such as robustness to environmental changes and energetic limitations. Oftentimes these objectives compete, and quantification of the relative impact of individual optimization targets is non-trivial. Pareto optimality offers a theoretical framework to decipher objectives and trade-offs between them. We, therefore, highlight Pareto theory as a useful tool for the analysis of neurobiological systems from biophysically detailed cells to large-scale network structures and behavior. The Pareto approach can help to assess optimality, identify relevant objectives and their respective impact, and formulate testable hypotheses.
Copyright © 2021 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Conflict of interest statement Nothing declared.
Similar articles
-
Pareto optimality, economy-effectiveness trade-offs and ion channel degeneracy: improving population modelling for single neurons.Open Biol. 2022 Jul;12(7):220073. doi: 10.1098/rsob.220073. Epub 2022 Jul 13. Open Biol. 2022. PMID: 35857898 Free PMC article. Review.
-
Travel in city road networks follows similar transport trade-off principles to neural and plant arbors.J R Soc Interface. 2019 May 31;16(154):20190041. doi: 10.1098/rsif.2019.0041. J R Soc Interface. 2019. PMID: 31088262 Free PMC article.
-
Neural arbors are Pareto optimal.Proc Biol Sci. 2019 May 15;286(1902):20182727. doi: 10.1098/rspb.2018.2727. Proc Biol Sci. 2019. PMID: 31039719 Free PMC article.
-
PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.Med Phys. 2011 Sep;38(9):5217-29. doi: 10.1118/1.3615622. Med Phys. 2011. PMID: 21978066
-
Constraints, Trade-offs and the Currency of Fitness.J Mol Evol. 2016 Mar;82(2-3):117-27. doi: 10.1007/s00239-016-9730-3. Epub 2016 Feb 26. J Mol Evol. 2016. PMID: 26920684 Review.
Cited by
-
Biological complexity facilitates tuning of the neuronal parameter space.PLoS Comput Biol. 2023 Jul 3;19(7):e1011212. doi: 10.1371/journal.pcbi.1011212. eCollection 2023 Jul. PLoS Comput Biol. 2023. PMID: 37399220 Free PMC article.
-
Tetrapod sperm length evolution in relation to body mass is shaped by multiple trade-offs.Nat Commun. 2024 Jul 22;15(1):6160. doi: 10.1038/s41467-024-50391-0. Nat Commun. 2024. PMID: 39039080 Free PMC article.
-
Approach for Detecting Attacks on IoT Networks Based on Ensemble Feature Selection and Deep Learning Models.Sensors (Basel). 2023 Aug 23;23(17):7342. doi: 10.3390/s23177342. Sensors (Basel). 2023. PMID: 37687798 Free PMC article.
-
Having multiple selves helps learning agents explore and adapt in complex changing worlds.Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2221180120. doi: 10.1073/pnas.2221180120. Epub 2023 Jul 3. Proc Natl Acad Sci U S A. 2023. PMID: 37399387 Free PMC article.
-
Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair.Commun Biol. 2023 May 3;6(1):479. doi: 10.1038/s42003-023-04823-0. Commun Biol. 2023. PMID: 37137938 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources