Perineuronal Net Dynamics in the Pathophysiology of Epilepsy
- PMID: 34690566
- PMCID: PMC8512927
- DOI: 10.1177/15357597211018688
Perineuronal Net Dynamics in the Pathophysiology of Epilepsy
Abstract
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) assemblies of polyanionic chondroitin sulfate proteoglycans, hyaluronan, and tenascins that primarily wrap around GABAergic parvalbumin (PV) interneurons. During development, PNN formation terminates the critical period of neuroplasticity, a process that can be reversed by experimental disruption of PNNs. Perineuronal nets also regulate the intrinsic properties of the enclosed PV neurons thereby maintaining their inhibitory activity. Recent studies have implicated PNNs in central nervous system diseases as well as PV neuron dysfunction; consequently, they have further been associated with altered inhibition, particularly in the genesis of epilepsy. A wide range of seizure presentations in human and rodent models exhibit ECM remodeling with PNN disruption due to elevated protease activity. Inhibition of PNN proteolysis reduces seizure activity suggesting that PNN degrading enzymes may be potential novel therapeutic targets.
Keywords: PV interneurons; epilepsy; extracellular matrix; matrix metalloproteinase; perineuronal net; seizure.
© The Author(s) 2021.
Conflict of interest statement
Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Figures
References
-
- Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L. Perineuronal nets: past and present. Trends Neurosci. 1998;21(12):510–515. doi:10.1016/s0166-2236(98)01298-3 - PubMed
-
- Kwok JC, Dick G, Wang D, Fawcett JW. Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol. 2011;71(11):1073–1089. - PubMed
-
- Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298(5596):1248–1251. - PubMed
-
- Kim SY, Porter BE, Friedman A, Kaufer D. A potential role for glia-derived extracellular matrix remodeling in postinjury epilepsy. J Neurosci Res. 2016;94(9):794–803. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
