Diversification of Ferredoxins across Living Organisms
- PMID: 34698119
- PMCID: PMC8928951
- DOI: 10.3390/cimb43030098
Diversification of Ferredoxins across Living Organisms
Abstract
Ferredoxins, iron-sulfur (Fe-S) cluster proteins, play a key role in oxidoreduction reactions. To date, evolutionary analysis of these proteins across the domains of life have been confined to observing the abundance of Fe-S cluster types (2Fe-2S, 3Fe-4S, 4Fe-4S, 7Fe-8S (3Fe-4s and 4Fe-4S) and 2[4Fe-4S]) and the diversity of ferredoxins within these cluster types was not studied. To address this research gap, here we propose a subtype classification and nomenclature for ferredoxins based on the characteristic spacing between the cysteine amino acids of the Fe-S binding motif as a subtype signature to assess the diversity of ferredoxins across the living organisms. To test this hypothesis, comparative analysis of ferredoxins between bacterial groups, Alphaproteobacteria and Firmicutes and ferredoxins collected from species of different domains of life that are reported in the literature has been carried out. Ferredoxins were found to be highly diverse within their types. Large numbers of alphaproteobacterial species ferredoxin subtypes were found in Firmicutes species and the same ferredoxin subtypes across the species of Bacteria, Archaea, and Eukarya, suggesting shared common ancestral origin of ferredoxins between Archaea and Bacteria and lateral gene transfer of ferredoxins from prokaryotes (Archaea/Bacteria) to eukaryotes. This study opened new vistas for further analysis of diversity of ferredoxins in living organisms.
Keywords: Archaea; Bacteria; Eukarya; domains of life; evolution; ferredoxins; iron-sulfur proteins; lateral gene transfer.
Conflict of interest statement
The authors declare no conflict of interest and the funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures
References
-
- Cammack R. Evolution and diversity in the iron-sulphur proteins. Chem. Scr. 1983;21:87–95.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
