Genetic Diversity of Human Host Genes Involved in Immune Response and the Binding of Malaria Parasite in Patients Residing along the Thai-Myanmar border
- PMID: 34698295
- PMCID: PMC8544681
- DOI: 10.3390/tropicalmed6040174
Genetic Diversity of Human Host Genes Involved in Immune Response and the Binding of Malaria Parasite in Patients Residing along the Thai-Myanmar border
Abstract
Polymorphisms of the genes encoding proteins involved in immune functions and the binding of malaria parasites to human host cells have been the focus of research in recent years, aiming to understand malaria pathogenesis and case severity and to exploit this knowledge to assert control over malaria. This study investigated the genetic diversity of the human host genes encoding proteins that are involved in immune functions and malaria parasite binding, i.e., MCP1 (-2518), TGFβ1 (-509), TNFα (-308), IL4 (VNTR), IL6 (-174), IL10 (-3575), TLR4 (299), CD36 (-188), and ICAM1 (469) in patients with mono-infection of Plasmodium falciparum and Plasmodium vivax infections in the multidrug-resistant areas along the Thai-Myanmar border. The association between gene polymorphisms and parasite density was also investigated. Genomic DNA (gDNA) of P. falciparum and P. vivax were extracted from whole blood and dried blood spot (DBS). Gene amplification and genotyping were performed by PCR and PCR-RFLP analysis, respectively. Of these samples, 178 and 209 samples were, respectively, mono-infection with P. falciparum and P. vivax. The ratio of P. falciparum: P. vivax was 46%:54%. Results showed marked variation in the frequency distribution and patterns of the genotypes and gene alleles of the nine immune response genes or human host genes. The SNPs of TGFβ1, IL10 and ICAM1, were significantly associated with P. falciparum, but not P. vivax parasite density. TGFβ1, IL10 and ICAM1, may play more significant roles in modulating P. falciparum than P. vivax parasitemia. The prevalence of the genotypes and gene alleles of these genes, including their association with parasite density, may vary depending on patient ethnicity and endemic areas. Information obtained from each endemic area is essential for treatment strategies and the development of vaccines for malaria prophylaxis in specific areas.
Keywords: CD36; ICAM1; IL10; IL4 (VNTR); IL6; MCP1; Plasmodium falciparum; Plasmodium vivax; TGFβ1; TLR4; TNFα.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures
References
-
- World Health Organization . World Malaria Report 2018. World Health Organisation; Geneva, Switzerland: 2018.
-
- Na-Bangchang K., Muhamad P., Ruaengweerayut R., Chaijaroenkul W., Karbwang J. Identification of resistance of Plasmodium falciparum to artesunate-mefloquine combination in an area along the Thai-Myanmar border: Integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity. Malar. J. 2013;12:263. doi: 10.1186/1475-2875-12-263. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
