Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 27;73(3):927-938.
doi: 10.1093/jxb/erab464.

Limitation of C4 photosynthesis by low carbonic anhydrase activity increases with temperature but does not influence mesophyll CO2 conductance

Affiliations

Limitation of C4 photosynthesis by low carbonic anhydrase activity increases with temperature but does not influence mesophyll CO2 conductance

Joseph D Crawford et al. J Exp Bot. .

Abstract

The CO2-concentrating mechanism (CCM) in C4 plants is initiated by the uptake of bicarbonate (HCO3-) via phosphoenolpyruvate carboxylase (PEPC). Generation of HCO3- for PEPC is determined by the interaction between mesophyll CO2 conductance and the hydration of CO2 to HCO3- by carbonic anhydrase (CA). Genetic reduction of CA was previously shown not to limit C4 photosynthesis under ambient atmospheric partial pressures of CO2 (pCO2). However, CA activity varies widely across C4 species and it is unknown if there are specific environmental conditions (e.g. high temperature) where CA may limit HCO3- production for C4 photosynthesis. Additionally, CA activity has been suggested to influence mesophyll conductance, but this has not been experimentally tested. We hypothesize that CA activity can limit PEPC at high temperatures, particularly at low pCO2, but does not directly influence gm. Here we tested the influence of genetically reduced CA activity on photosynthesis and gm in the C4 plant Zea mays under a range of pCO2 and temperatures. Reduced CA activity limited HCO3- production for C4 photosynthesis at low pCO2 as temperatures increased, but did not influence mesophyll conductance. Therefore, high leaf CA activity may enhance C4 photosynthesis under high temperature when stomatal conductance restricts the availability of atmospheric CO2.

Keywords: C4 photosynthesis; Carbonic anhydrase; intrinsic water use efficiency; isotopic equilibrium; mesophyll conductance; phosphoenolpyruvate carboxylase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources