Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan 15;205(2):152-160.
doi: 10.1164/rccm.202107-1690CP.

Constant Vt Ventilation and Surfactant Dysfunction: An Overlooked Cause of Ventilator-induced Lung Injury

Affiliations
Review

Constant Vt Ventilation and Surfactant Dysfunction: An Overlooked Cause of Ventilator-induced Lung Injury

Richard K Albert. Am J Respir Crit Care Med. .

Abstract

Ventilator-induced lung injury (VILI) is currently ascribed to volutrauma and/or atelectrauma, but the effect of constant Vt ventilation (CVtV) has received little attention. This Perspective summarizes the literature documenting that CVtV causes VILI and reviews the mechanisms by which it occurs. Surfactant is continuously inactivated, depleted, displaced, or desorbed as a function of the duration of ventilation, the Vt, the level of positive end-expiratory pressure (PEEP), and possibly the respiratory rate. Accordingly, surfactant must be continuously replenished, and secretion primarily depends on intermittent delivery of large ventilatory excursions. The surfactant abnormalities resulting from CVtV result in atelectasis and VILI. Although surfactant secretion is reduced by the absence of intermittent deep breaths, continuous administration of large Vts depletes surfactant and impairs subsequent secretion. Low or normal lung volumes result in desorption of surfactant. PEEP can be protective by reducing surface film collapse and subsequent film rupture on reexpansion, and/or by reducing surfactant displacement into the airways, but PEEP can also downregulate surfactant release. The effect of CVtV on surfactant is complex. If attention is not paid to facilitating surfactant secretion and limiting its inactivation, depletion, desorption, or displacement, surface tension will increase and atelectasis and VILI will occur.

Keywords: acute respiratory distress syndrome; surfactant; ventilator-induced lung injury.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources