Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan;37(1):253-263.
doi: 10.1007/s11011-021-00853-x. Epub 2021 Oct 27.

Circular RNA circLIFR regulates the proliferation, migration, invasion and apoptosis of human vascular smooth muscle cells via the miR-1299/KDR axis

Affiliations

Circular RNA circLIFR regulates the proliferation, migration, invasion and apoptosis of human vascular smooth muscle cells via the miR-1299/KDR axis

Hui Zhang et al. Metab Brain Dis. 2022 Jan.

Abstract

Dysfunction of vascular smooth muscle cells (VSMCs) plays a critical role in the development of intracranial aneurysm (IA). Here, we explored the detailed role and mechanism of circular RNA (circRNA) LIF receptor subunit alpha (circLIFR, circ_0072309) in human umbilical artery smooth muscle cells (HUASMCs). CircLIFR, microRNA (miR)-1299 and kinase insert domain receptor (KDR) expression levels were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays. Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-Deoxyuridine (EdU) assays. Cell migration was gauged by wound-healing and transwell assays. Cell invasion and apoptosis were detected by transwell assay and flow cytometry, respectively. Direct relationship between miR-1299 and circLIFR or KDR was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. CircLIFR and KDR were down-regulated and miR-1299 was up-regulated in the artery wall tissues and ASMCs of IA patients. Enforced expression of circLIFR enhanced HUASMC proliferation, migration, invasion, and impeded apoptosis. Mechanistically, circLIFR directly targeted miR-1299, and miR-1299 was a downstream mediator of circLIFR in regulating the proliferation, migration, invasion and apoptosis of HUASMCs. KDR was identified as a direct and functional target of miR-1299 in HUASMCs. Furthermore, circLIFR was a post-transcriptional regulator of KDR expression through miR-1299. Our findings suggest that circLIFR, an underexpressed circRNA in IA, can regulate the proliferation, migration, invasion and apoptosis of HUASMCs depending on the miR-1299/KDR axis.

Keywords: HUASMCs; Intracranial aneurysm; KDR; circLIFR; miR-1299.

PubMed Disclaimer

References

    1. Aoki T, Kataoka H, Nishimura M, Ishibashi R, Morishita R, Miyamoto S (2010) Ets-1 promotes the progression of cerebral aneurysm by inducing the expression of MCP-1 in vascular smooth muscle cells. Gene Ther 17:1117–1123. https://doi.org/10.1038/gt.2010.60 - DOI - PubMed
    1. Chanakira A, Dutta R, Charboneau R, Barke R, Santilli SM, Roy S (2012) Hypoxia differentially regulates arterial and venous smooth muscle cell proliferation via PDGFR-β and VEGFR-2 expression. Am J Physiol Heart Circ Physiol 302:H1173–H1184. https://doi.org/10.1152/ajpheart.00411.2011 - DOI - PubMed
    1. Chen T, Shao S, Li W, Liu Y, Cao Y (2019) The circular RNA hsa-circ-0072309 plays anti-tumour roles by sponging miR-100 through the deactivation of PI3K/AKT and mTOR pathways in the renal carcinoma cell lines. Artif Cells Nanomed Biotechnol 47:3638–3648. https://doi.org/10.1080/21691401.2019.1657873 - DOI - PubMed
    1. Etminan N, Rinkel GJ (2016) Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol 12:699–713. https://doi.org/10.1038/nrneurol.2016.150 - DOI - PubMed
    1. Gareev IF, Safin SM (2019) The role of endogenous miRNAs in the development of cerebral aneurysms. Zhurnal Voprosy Neirokhirurgii Imeni N N Burdenko 83:112–118. https://doi.org/10.17116/neiro201983011112 - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources