Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 24;6(12):4360-4368.
doi: 10.1021/acssensors.1c01665. Epub 2021 Oct 28.

Surface Plasmon-Coupled Dual Emission Platform for Ultrafast Oxygen Monitoring after SARS-CoV-2 Infection

Affiliations

Surface Plasmon-Coupled Dual Emission Platform for Ultrafast Oxygen Monitoring after SARS-CoV-2 Infection

Bebeto Rai et al. ACS Sens. .

Abstract

The outbreak of the COVID-19 pandemic has had a major impact on the health and well-being of people with its long-term effect on lung function and oxygen uptake. In this work, we present a unique approach to augment the phosphorescence signal from phosphorescent gold(III) complexes based on a surface plasmon-coupled emission platform and use it for designing a ratiometric sensor with high sensitivity and ultrafast response time for monitoring oxygen uptake in SARS-CoV-2-recovered patients. Two monocyclometalated Au(III) complexes, one having exclusively phosphorescence emission (λPL = 578 nm) and the other having dual emission, fluorescence (λPL = 417 nm) and phosphorescence (λPL = 579 nm), were studied using the surface plasmon-coupled dual emission (SPCDE) platform for the first time, which showed 27-fold and 17-fold enhancements, respectively. The latter complex having the dual emission was then used for the fabrication of a ratiometric sensor for studying the oxygen quenching of phosphorescence emission with the fluorescence emission acting as an internal standard. Low-cost poly (methyl methacrylate) (PMMA) and biodegradable wood were used to fabricate the microfluidic chips for oxygen monitoring. The sensor showed a high sensitivity with a limit of detection ∼ 0.1%. Furthermore, real-time oxygen sensing was carried out and the response time of the sensor was calculated to be ∼0.2 s. The sensor chip was used for monitoring the oxygen uptake in SARS-CoV-2-recovered study participants, to assess their lung function post the viral infection.

Keywords: SARS-CoV-2; biodegradable wood microfluidics; oxygen sensing; real-time oxygen sensing; surface plasmon-coupled emission; surface plasmon-coupled fluorescence; surface plasmon-coupled phosphorescence.

PubMed Disclaimer

Publication types

LinkOut - more resources