Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb:252:109216.
doi: 10.1016/j.cbpc.2021.109216. Epub 2021 Oct 26.

Short exposure to ethyl and methylmercury prompts similar toxic responses in Drosophila melanogaster

Affiliations

Short exposure to ethyl and methylmercury prompts similar toxic responses in Drosophila melanogaster

Guilherme Wildner et al. Comp Biochem Physiol C Toxicol Pharmacol. 2022 Feb.

Abstract

Methylmercury (MeHg) and ethylmercury (EtHg) are important mercury organic forms in terms of human poisoning. Since the comparative effects of compounds are mainly in vitro, this study was designed to investigate the toxicities induced by MeHg and EtHg in an in vivo study using adult Drosophila melanogaster (D. melanogaster). Firstly, we performed a survival curve, where the flies were fed on a medium containing MeHg and EtHg at concentrations ranging from 2.5 to 200 μM, until the end of their lifespan. After that, the concentrations 25 and 200 μM of MeHg and EtHg were chosen to be tested in a short exposure for 5 days. The analysis of survival by Kaplan-Meier plot revealed that all concentrations of MeHg and EtHg reduced significantly the lifespan of the flies. Short exposure to both concentrations of MeHg and EtHg impaired the ability of flies in the climbing assay and induced lipid peroxidation. Only the flies exposed to the highest concentration had viability loss, thiol depletion, and increased reactive species (RS) and Hg levels in the whole body. Our findings indicate that MeHg and EtHg exhibit similar toxic effects in vivo, and that oxidative stress is a phenomenon behind the toxicity of both mercurials. The data obtained also reinforce the use of D. melanogaster as a useful organism for basic toxicological research.

Keywords: D. melanogaster; Ethylmercury; Mercury; Methylmercury; Oxidative stress.

PubMed Disclaimer

MeSH terms

Substances