Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jun 1;47(11):3005-11.

Saturation of 1-beta-D-arabinofuranosylcytosine 5'-triphosphate accumulation in leukemia cells during high-dose 1-beta-D-arabinofuranosylcytosine therapy

  • PMID: 3471322

Saturation of 1-beta-D-arabinofuranosylcytosine 5'-triphosphate accumulation in leukemia cells during high-dose 1-beta-D-arabinofuranosylcytosine therapy

W Plunkett et al. Cancer Res. .

Abstract

Twenty-seven patients with refractory leukemia were treated with 1-beta-D-arabinofuranosylcytosine (ara-C), 0.3 to 3.0 g/m2 as i.v. infusions over 1, 2, 4, or 24 h. The pharmacokinetics of ara-C in plasma and its 5'-triphosphate (ara-CTP) in leukemic cells from peripheral blood were studied after a single infusion of 3 g/m2 over 2 h in 13 patients. Accumulation of ara-CTP in leukemic cells remained linear until 1 to 2 h after the infusion. At the time when the rate of ara-CTP accumulation deviated from linearity, the plasma concentration of ara-C was 5- to 20-fold lower [8.1 +/- 4.4 (SD) microM] than the steady-state level during the infusion. Plasma ara-C and cellular ara-CTP pharmacokinetics were studied after two serial infusions in 14 additional patients. Varying the duration of infusion of an ara-C dose between 1, 2, and 4 h (corresponding to infusion rates of 3000, 1500, and 750 mg/m2/h) did not substantially change the rate of ara-CTP accumulation by leukemic cells. The peak ara-CTP concentration and the area under the concentration times time curve (AUC) of ara-CTP in leukemic cells increased with prolongation of the infusion. Although steady-state concentration of ara-C and AUC of ara-C in plasma were proportionally reduced by 1.0 or 0.5 g/m2 infusion over 2 h, ara-CTP accumulation rate and AUC in leukemic cells did not change compared with administration of 3 g/m2 over 2 h. However, when the infusion rate was further reduced to 0.4 or 0.3 g/m2 over 2 h, resulting in steady-state plasma ara-C concentrations of less than 7 microM, the accumulation rate of ara-CTP was substantially reduced as was the ara-CTP intracellular AUC. The cellular elimination rate of ara-CTP remained constant under all infusion conditions. These findings support the conclusion that high-dose ara-C therapy, as currently administered, results in plasma ara-C concentrations that saturate the accumulation of ara-CTP by circulating leukemic cells. We recommend that intermediate dose rates, 200 to 250 mg/m2/h, be evaluated in future studies as an alternative to the substantially higher ara-C dose rates currently in use.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources