Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Dec:72:62-68.
doi: 10.1016/j.copbio.2021.10.004. Epub 2021 Oct 26.

Adaptive biomimicry: design of neural interfaces with enhanced biointegration

Affiliations
Review

Adaptive biomimicry: design of neural interfaces with enhanced biointegration

Roberto Portillo-Lara et al. Curr Opin Biotechnol. 2021 Dec.

Abstract

Neural interfaces (NIs) have traditionally used inorganic device constructs paired with electrical stimulation to bypass injured or diseased electroactive tissues. These bioinert devices have significant impact on the neural tissue, being synthetic and causing large volumetric changes to the biological environment. The concept of biomimicry has become popular for tissue engineering technologies, reflecting biological properties as a component of material design. Tissue engineering strategies can be harnessed in bioelectronic device design to improve biological tolerance, but the need for improved integration with the native tissue remains an unmet need. Adaptive biomimetic designs that respond to the changing neural tissue environment associated with wound healing can actively address the immune response to improve biointegration. These adaptive approaches include responsive materials paired with stem cells and bioactive molecules as integrated components of NIs. Combining adaptive biomimetics with NIs provides a new, more natural approach for communicating with the nervous system.

PubMed Disclaimer

LinkOut - more resources