Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec;105(23):8805-8822.
doi: 10.1007/s00253-021-11659-3. Epub 2021 Oct 30.

Evolutionary genomics and biosynthetic potential of novel environmental Actinobacteria

Affiliations

Evolutionary genomics and biosynthetic potential of novel environmental Actinobacteria

Carlos Caicedo-Montoya et al. Appl Microbiol Biotechnol. 2021 Dec.

Abstract

Actinobacteria embroil Gram-positive microbes with high guanine and cytosine contents in their DNA. They are the source of most antimicrobials of bacterial origin utilized in medicine today. Their genomes are among the richest in novel secondary metabolites with high biotechnological potential. Actinobacteria reveal complex patterns of evolution, responses, and adaptations to their environment, which are not yet well understood. We analyzed three novel plant isolates and explored their habitat adaptation, evolutionary patterns, and potential secondary metabolite production. The phylogenomically characterized isolates belonged to Actinoplanes sp. TFC3, Streptomyces sp. L06, and Embleya sp. NF3. Positively selected genes, relevant in strain evolution, encoded enzymes for stress resistance in all strains, including porphyrin, chlorophyll, and ubiquinone biosynthesis in Embleya sp. NF3. Streptomyces sp. L06 encoded for pantothenate and proteins for CoA biosynthesis with evidence of positive selection; furthermore, Actinoplanes sp. TFC3 encoded for a c-di-GMP synthetase, with adaptive mutations. Notably, the genomes harbored many genes involved in the biosynthesis of at least ten novel secondary metabolites, with many avenues for future new bioactive compound characterization-specifically, Streptomyces sp. L06 could make new ribosomally synthesized and post-translationally modified peptides, while Embleya sp. NF3 could produce new non-ribosomal peptide synthetases and ribosomally synthesized and post-translationally modified peptides. At the same time, TFC3 has particularly enriched in terpene and polyketide synthases. All the strains harbored conserved genes in response to diverse environmental stresses, plant growth promotion factors, and degradation of various carbohydrates, which supported their endophytic lifestyle and showed their capacity to colonize other niches. This study aims to provide a comprehensive estimation of the genomic features of novel Actinobacteria. It sets the groundwork for future research into experimental tests with new bioactive metabolites with potential application in medicine, biofertilizers, and plant biomass residue utilization, with potential application in medicine, as biofertilizers and in plant biomass residues utilization. KEY POINTS: • Potential of novel environmental bacteria for secondary metabolites production • Exploring the genomes of three novel endophytes isolated from a medicinal tree • Pan-genome analysis of Actinobacteria genera.

Keywords: Actinoplanes; Comparative genomics; Drug discovery; Embleya; Genome mining; Streptomyces.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49. https://doi.org/10.1016/j.micres.2019.02.001 - DOI - PubMed
    1. Anastasi E, MacArthur I, Scortti M, Alvarez S, Giguére S, Vázquez-Boland JA (2016) Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol 8:3140–3148. https://doi.org/10.1093/gbe/evw222 - DOI - PubMed - PMC
    1. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H (2020) KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36:2251–2252. https://doi.org/10.1093/bioinformatics/btz859 - DOI - PubMed
    1. Arthur RA, Gulvik CA, Humrighouse BW, Lasker BA, Batra D, Rowe LA, Igual JM, Nouioui I, Klenk HP, McQuiston JR (2018) Complete genome sequence of Streptacidiphilus sp. strain 15–057A, obtained from bronchial lavage fluid. Microbiol Resour Announc 7:e01127-e1218. https://doi.org/10.1128/MRA.01127-18 - DOI - PubMed - PMC
    1. Awakawa T, Fujita N, Hayakawa M, Ohnishi Y, Horinouchi S (2011) Characterization of the biosynthesis gene cluster for alkyl-O-dihydrogeranyl-methoxyhydroquinones in Actinoplanes missouriensis. ChemBioChem 12:439–448. https://doi.org/10.1002/cbic.201000628 - DOI - PubMed

Substances

LinkOut - more resources