Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct;150(4):2798.
doi: 10.1121/10.0006668.

Measurement of the ultrasound attenuation and dispersion in 3D-printed photopolymer materials from 1 to 3.5 MHz

Affiliations

Measurement of the ultrasound attenuation and dispersion in 3D-printed photopolymer materials from 1 to 3.5 MHz

Marina Bakaric et al. J Acoust Soc Am. 2021 Oct.

Abstract

Over the past decade, the range of applications in biomedical ultrasound exploiting 3D printing has rapidly expanded. For wavefront shaping specifically, 3D printing has enabled a diverse range of new, low-cost approaches for controlling acoustic fields. These methods rely on accurate knowledge of the bulk acoustic properties of the materials; however, to date, robust knowledge of these parameters is lacking for many materials that are commonly used. In this work, the acoustic properties of eight 3D-printed photopolymer materials were characterised over a frequency range from 1 to 3.5 MHz. The properties measured were the frequency-dependent phase velocity and attenuation, group velocity, signal velocity, and mass density. The materials were fabricated using two separate techniques [PolyJet and stereolithograph (SLA)], and included Agilus30, FLXA9960, FLXA9995, Formlabs Clear, RGDA8625, RGDA8630, VeroClear, and VeroWhite. The range of measured density values across all eight materials was 1120-1180 kg · m-3, while the sound speed values were between 2020 to 2630 m · s-1, and attenuation values typically in the range 3-9 dB · MHz-1· cm-1.

PubMed Disclaimer

LinkOut - more resources