Genomic prediction in the wild: A case study in Soay sheep
- PMID: 34719074
- DOI: 10.1111/mec.16262
Genomic prediction in the wild: A case study in Soay sheep
Abstract
Genomic prediction, the technique whereby an individual's genetic component of their phenotype is estimated from its genome, has revolutionised animal and plant breeding and medical genetics. However, despite being first introduced nearly two decades ago, it has hardly been adopted by the evolutionary genetics community studying wild organisms. Here, genomic prediction is performed on eight traits in a wild population of Soay sheep. The population has been the focus of a >30 year evolutionary ecology study and there is already considerable understanding of the genetic architecture of the focal Mendelian and quantitative traits. We show that the accuracy of genomic prediction is high for all traits, but especially those with loci of large effect segregating. Five different methods are compared, and the two methods that can accommodate zero-effect and large-effect loci in the same model tend to perform best. If the accuracy of genomic prediction is similar in other wild populations, then there is a real opportunity for pedigree-free molecular quantitative genetics research to be enabled in many more wild populations; currently the literature is dominated by studies that have required decades of field data collection to generate sufficiently deep pedigrees. Finally, some of the potential applications of genomic prediction in wild populations are discussed.
Keywords: genetic architecture; genomic prediction; genomic selection; molecular quantitative genetics.
© 2021 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Comment in
-
The challenge of demonstrating contemporary natural selection on polygenic quantitative traits in the wild.Mol Ecol. 2022 Dec;31(24):6383-6386. doi: 10.1111/mec.16761. Epub 2022 Nov 15. Mol Ecol. 2022. PMID: 36325827 Free PMC article.
Similar articles
-
The utility of genomic prediction models in evolutionary genetics.Proc Biol Sci. 2021 Aug 11;288(1956):20210693. doi: 10.1098/rspb.2021.0693. Epub 2021 Aug 4. Proc Biol Sci. 2021. PMID: 34344180 Free PMC article.
-
Using genomic prediction to detect microevolutionary change of a quantitative trait.Proc Biol Sci. 2022 May 11;289(1974):20220330. doi: 10.1098/rspb.2022.0330. Epub 2022 May 11. Proc Biol Sci. 2022. PMID: 35538786 Free PMC article.
-
Genomic prediction of reproduction traits for Merino sheep.Anim Genet. 2017 Jun;48(3):338-348. doi: 10.1111/age.12541. Epub 2017 Feb 17. Anim Genet. 2017. PMID: 28211150
-
Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches.Mol Ecol. 2014 Jul;23(14):3434-51. doi: 10.1111/mec.12827. Epub 2014 Jun 26. Mol Ecol. 2014. PMID: 24917482 Free PMC article.
-
Genomic prediction of breeding values in the New Zealand sheep industry using a 50K SNP chip.J Anim Sci. 2014 Oct;92(10):4375-89. doi: 10.2527/jas.2014-7801. Epub 2014 Aug 22. J Anim Sci. 2014. PMID: 25149326
Cited by
-
The impact of SNP density on quantitative genetic analyses of body size traits in a wild population of Soay sheep.Ecol Evol. 2022 Dec 14;12(12):e9639. doi: 10.1002/ece3.9639. eCollection 2022 Dec. Ecol Evol. 2022. PMID: 36532132 Free PMC article.
-
A polygenic basis for birth weight in a wild population of red deer (Cervus elaphus).G3 (Bethesda). 2023 Apr 11;13(4):jkad018. doi: 10.1093/g3journal/jkad018. G3 (Bethesda). 2023. PMID: 36652410 Free PMC article.
-
Microevolutionary change in wild stickleback: Using integrative time-series data to infer responses to selection.Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2410324121. doi: 10.1073/pnas.2410324121. Epub 2024 Sep 4. Proc Natl Acad Sci U S A. 2024. PMID: 39231210 Free PMC article.
-
Investigating pedigree- and SNP-associated components of heritability in a wild population of Soay sheep.Heredity (Edinb). 2024 Apr;132(4):202-210. doi: 10.1038/s41437-024-00673-6. Epub 2024 Feb 10. Heredity (Edinb). 2024. PMID: 38341521 Free PMC article.
-
Genomic prediction of growth in a commercially, recreationally, and culturally important marine resource, the Australian snapper (Chrysophrys auratus).G3 (Bethesda). 2022 Mar 4;12(3):jkac015. doi: 10.1093/g3journal/jkac015. G3 (Bethesda). 2022. PMID: 35100370 Free PMC article.
References
REFERENCES
-
- Auvray, B., McEwan, J. C., Newman, S. A., Lee, M., & Dodds, K. G. (2014). Genomic prediction of breeding values in the New Zealand sheep industry using a 50K SNP chip. Journal of Animal Science, 92(10), 4375-4389. https://doi.org/10.2527/jas.2014-7801
-
- Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. https://doi.org/10.18637/jss.v067.i01
-
- Bérénos, C., Ellis, P. A., Pilkington, J. G., Lee, S. H., Gratten, J., & Pemberton, J. M. (2015). Heterogeneity of genetic architecture of body size traits in a free-living population. Molecular Ecology, 24(8), 1810-1830. https://doi.org/10.1111/mec.13146
-
- Bérénos, C., Ellis, P. A., Pilkington, J. G., & Pemberton, J. M. (2014). Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Molecular Ecology, 23(14), 3434-3451. https://doi.org/10.1111/mec.12827
-
- Bosse, M., Spurgin, L. G., Laine, V. N., Cole, E. F., Firth, J. A., Gienapp, P., Gosler, A. G., McMahon, K., Poissant, J., Verhagen, I., Groenen, M. A. M., van Oers, K., Sheldon, B. C., Visser, M. E., & Slate, J. (2017). Recent natural selection causes adaptive evolution of an avian polygenic trait. Science, 358(6361), 365-368. https://doi.org/10.1126/science.aal3298
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources