Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021;81(4):322.
doi: 10.1140/epjc/s10052-021-09007-w. Epub 2021 Apr 16.

Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment: DUNE Collaboration

B Abi  1 R Acciarri  2 M A Acero  3 G Adamov  4 D Adams  5 M Adinolfi  6 Z Ahmad  7 J Ahmed  8 T Alion  9 S Alonso Monsalve  10 C Alt  11 J Anderson  12 C Andreopoulos  13   14 M P Andrews  2 F Andrianala  15 S Andringa  16 A Ankowski  17 M Antonova  18 S Antusch  19 A Aranda-Fernandez  20 A Ariga  21 L O Arnold  22 M A Arroyave  23 J Asaadi  24 A Aurisano  25 V Aushev  26 D Autiero  27 F Azfar  1 H Back  28 J J Back  8 C Backhouse  29 P Baesso  6 L Bagby  2 R Bajou  30 S Balasubramanian  31 P Baldi  32 B Bambah  33 F Barao  34   16 G Barenboim  18 G J Barker  8 W Barkhouse  35 C Barnes  36 G Barr  1 J Barranco Monarca  37 N Barros  38   16 J L Barrow  2   39 A Bashyal  40 V Basque  41 F Bay  42 J L Bazo Alba  43 J F Beacom  44 E Bechetoille  27 B Behera  45 L Bellantoni  2 G Bellettini  46 V Bellini  47   48 O Beltramello  10 D Belver  49 N Benekos  10 F Bento Neves  16 J Berger  50 S Berkman  2 P Bernardini  51   52 R M Berner  21 H Berns  53 S Bertolucci  54   55 M Betancourt  2 Y Bezawada  53 M Bhattacharjee  56 B Bhuyan  56 S Biagi  57 J Bian  32 M Biassoni  58 K Biery  2 B Bilki  59   60 M Bishai  5 A Bitadze  41 A Blake  61 B Blanco Siffert  62 F D M Blaszczyk  2 G C Blazey  63 E Blucher  64 J Boissevain  65 S Bolognesi  66 T Bolton  67 M Bonesini  58   68 M Bongrand  69 F Bonini  5 A Booth  9 C Booth  70 S Bordoni  10 A Borkum  9 T Boschi  71 N Bostan  60 P Bour  72 S B Boyd  8 D Boyden  63 J Bracinik  73 D Braga  2 D Brailsford  61 A Brandt  24 J Bremer  10 C Brew  14 E Brianne  41 S J Brice  2 C Brizzolari  58   68 C Bromberg  74 G Brooijmans  22 J Brooke  6 A Bross  2 G Brunetti  75 N Buchanan  45 H Budd  76 D Caiulo  27 P Calafiura  77 J Calcutt  74 M Calin  78 S Calvez  45 E Calvo  49 L Camilleri  22 A Caminata  79 M Campanelli  29 D Caratelli  2 G Carini  5 B Carlus  27 P Carniti  58 I Caro Terrazas  45 H Carranza  24 A Castillo  80 C Castromonte  81 C Cattadori  58 F Cavalier  69 F Cavanna  2 S Centro  82 G Cerati  2 A Cervelli  55 A Cervera Villanueva  18 M Chalifour  10 C Chang  83 E Chardonnet  30 A Chatterjee  50 S Chattopadhyay  7 J Chaves  84 H Chen  5 M Chen  32 Y Chen  21 D Cherdack  85 C Chi  22 S Childress  2 A Chiriacescu  78 K Cho  86 S Choubey  87 A Christensen  45 D Christian  2 G Christodoulou  10 E Church  28 P Clarke  88 T E Coan  89 A G Cocco  90 J A B Coelho  69 E Conley  91 J M Conrad  92 M Convery  17 L Corwin  93 P Cotte  66 L Cremaldi  94 L Cremonesi  29 J I Crespo-Anadón  49 E Cristaldo  95 R Cross  61 C Cuesta  49 Y Cui  83 D Cussans  6 M Dabrowski  5 H da Motta  96 L Da Silva Peres  62 C David  2   97 Q David  27 G S Davies  94 S Davini  79 J Dawson  30 K De  24 R M De Almeida  98 P Debbins  60 I De Bonis  99 M P Decowski  100   42 A de Gouvêa  101 P C De Holanda  102 I L De Icaza Astiz  9 A Deisting  103 P De Jong  100   42 A Delbart  66 D Delepine  37 M Delgado  104 A Dell'Acqua  10 P De Lurgio  12 J R T de Mello Neto  62 D M DeMuth  105 S Dennis  106 C Densham  14 G Deptuch  2 A De Roeck  10 V De Romeri  18 J J De Vries  106 R Dharmapalan  107 M Dias  108 F Diaz  43 J S Díaz  109 S Di Domizio  110   79 L Di Giulio  10 P Ding  2 L Di Noto  110   79 C Distefano  57 R Diurba  111 M Diwan  5 Z Djurcic  12 N Dokania  112 M J Dolinski  113 L Domine  17 D Douglas  74 F Drielsma  17 D Duchesneau  99 K Duffy  2 P Dunne  114 T Durkin  14 H Duyang  115 O Dvornikov  107 D A Dwyer  77 A S Dyshkant  63 M Eads  63 D Edmunds  74 J Eisch  116 S Emery  66 A Ereditato  21 C O Escobar  2 L Escudero Sanchez  106 J J Evans  41 E Ewart  109 A C Ezeribe  70 K Fahey  2 A Falcone  58   68 C Farnese  82 Y Farzan  117 J Felix  37 E Fernandez-Martinez  118 P Fernandez Menendez  18 F Ferraro  110   79 L Fields  2 A Filkins  119 F Filthaut  42   120 R S Fitzpatrick  36 W Flanagan  121 B Fleming  31 R Flight  76 J Fowler  91 W Fox  109 J Franc  72 K Francis  63 D Franco  31 J Freeman  2 J Freestone  41 J Fried  5 A Friedland  17 S Fuess  2 I Furic  122 A P Furmanski  111 A Gago  43 H Gallagher  123 A Gallego-Ros  49 N Gallice  124   125 V Galymov  27 E Gamberini  10 T Gamble  70 R Gandhi  87 R Gandrajula  74 S Gao  5 D Garcia-Gamez  126 M Á García-Peris  18 S Gardiner  2 D Gastler  127 G Ge  22 B Gelli  102 A Gendotti  11 S Gent  128 Z Ghorbani-Moghaddam  79 D Gibin  82 I Gil-Botella  49 C Girerd  27 A K Giri  129 D Gnani  77 O Gogota  26 M Gold  130 S Gollapinni  65 K Gollwitzer  2 R A Gomes  131 L V Gomez Bermeo  80 L S Gomez Fajardo  80 F Gonnella  73 J A Gonzalez-Cuevas  95 M C Goodman  12 O Goodwin  41 S Goswami  132 C Gotti  58 E Goudzovski  73 C Grace  77 M Graham  17 E Gramellini  31 R Gran  133 E Granados  37 A Grant  134 C Grant  127 D Gratieri  98 P Green  41 S Green  106 L Greenler  135 M Greenwood  40 J Greer  6 W C Griffith  9 M Groh  109 J Grudzinski  12 K Grzelak  136 W Gu  5 V Guarino  12 R Guenette  137 A Guglielmi  75 B Guo  115 K K Guthikonda  138 R Gutierrez  104 P Guzowski  41 M M Guzzo  102 S Gwon  139 A Habig  133 A Hackenburg  31 H Hadavand  24 R Haenni  21 A Hahn  2 J Haigh  8 J Haiston  93 T Hamernik  2 P Hamilton  114 J Han  50 K Harder  14 D A Harris  2   97 J Hartnell  9 T Hasegawa  140 R Hatcher  2 E Hazen  127 A Heavey  2 K M Heeger  31 J Heise  141 K Hennessy  13 S Henry  76 M A Hernandez Morquecho  37 K Herner  2 L Hertel  32 A S Hesam  10 J Hewes  25 A Higuera  85 T Hill  142 S J Hillier  73 A Himmel  2 J Hoff  2 C Hohl  19 A Holin  29 E Hoppe  28 G A Horton-Smith  67 M Hostert  71 A Hourlier  92 B Howard  2 R Howell  76 J Huang  143 J Huang  53 J Hugon  144 G Iles  114 N Ilic  145 A M Iliescu  55 R Illingworth  2 A Ioannisian  146 R Itay  17 A Izmaylov  18 E James  2 B Jargowsky  32 F Jediny  72 C Jesùs-Valls  147 X Ji  5 L Jiang  148 S Jiménez  49 A Jipa  78 A Joglekar  83 C Johnson  45 R Johnson  25 B Jones  24 S Jones  29 C K Jung  112 T Junk  2 Y Jwa  22 M Kabirnezhad  1 A Kaboth  14 I Kadenko  26 F Kamiya  149 G Karagiorgi  22 A Karcher  77 M Karolak  66 Y Karyotakis  99 S Kasai  150 S P Kasetti  144 L Kashur  45 N Kazaryan  146 E Kearns  127 P Keener  84 K J Kelly  2 E Kemp  102 W Ketchum  2 S H Kettell  5 M Khabibullin  151 A Khotjantsev  151 A Khvedelidze  4 D Kim  10 B King  2 B Kirby  5 M Kirby  2 J Klein  84 K Koehler  135 L W Koerner  85 S Kohn  152   77 P P Koller  21 M Kordosky  119 T Kosc  27 U Kose  10 V A Kostelecký  109 K Kothekar  6 F Krennrich  116 I Kreslo  21 Y Kudenko  151 V A Kudryavtsev  70 S Kulagin  151 J Kumar  107 R Kumar  153 C Kuruppu  115 V Kus  72 T Kutter  144 A Lambert  77 K Lande  84 C E Lane  113 K Lang  143 T Langford  31 P Lasorak  9 D Last  84 C Lastoria  49 A Laundrie  135 A Lawrence  77 I Lazanu  78 R LaZur  45 T Le  123 J Learned  107 P LeBrun  27 G Lehmann Miotto  10 R Lehnert  109 M A Leigui de Oliveira  149 M Leitner  77 M Leyton  147 L Li  32 S Li  5 S W Li  17 T Li  88 Y Li  5 H Liao  67 C S Lin  77 S Lin  144 A Lister  135 B R Littlejohn  154 J Liu  32 S Lockwitz  2 T Loew  77 M Lokajicek  155 I Lomidze  4 K Long  114 K Loo  156 D Lorca  21 T Lord  8 J M LoSecco  157 W C Louis  65 K B Luk  152   77 X Luo  158 N Lurkin  73 T Lux  147 V P Luzio  149 D MacFarland  17 A A Machado  102 P Machado  2 C T Macias  109 J R Macier  2 A Maddalena  159 P Madigan  152   77 S Magill  12 K Mahn  74 A Maio  38   16 J A Maloney  160 G Mandrioli  55 J Maneira  38   16 L Manenti  29 S Manly  76 A Mann  123 K Manolopoulos  14 M Manrique Plata  109 A Marchionni  2 W Marciano  5 D Marfatia  107 C Mariani  148 J Maricic  107 F Marinho  161 A D Marino  162 M Marshak  111 C Marshall  77 J Marshall  8 J Marteau  27 J Martin-Albo  18 N Martinez  67 D A Martinez Caicedo  93 S Martynenko  112 K Mason  123 A Mastbaum  163 M Masud  18 S Matsuno  107 J Matthews  144 C Mauger  84 N Mauri  54   55 K Mavrokoridis  13 R Mazza  58 A Mazzacane  2 E Mazzucato  66 E McCluskey  2 N McConkey  41 K S McFarland  76 C McGrew  112 A McNab  41 A Mefodiev  151 P Mehta  164 P Melas  165 M Mellinato  58   68 O Mena  18 S Menary  97 H Mendez  166 A Menegolli  167   168 G Meng  75 M D Messier  109 W Metcalf  144 M Mewes  109 H Meyer  169 T Miao  2 G Michna  128 T Miedema  42   120 J Migenda  70 R Milincic  107 W Miller  111 J Mills  123 C Milne  142 O Mineev  151 O G Miranda  170 S Miryala  5 C S Mishra  2 S R Mishra  115 A Mislivec  111 D Mladenov  10 I Mocioiu  171 K Moffat  71 N Moggi  54   55 R Mohanta  33 T A Mohayai  2 N Mokhov  2 J Molina  95 L Molina Bueno  11 A Montanari  55 C Montanari  167   168 D Montanari  2 L M Montano Zetina  170 J Moon  92 M Mooney  45 A Moor  106 D Moreno  104 B Morgan  8 C Morris  85 C Mossey  2 E Motuk  29 C A Moura  149 J Mousseau  36 W Mu  2 L Mualem  172 J Mueller  45 M Muether  169 S Mufson  109 F Muheim  88 A Muir  134 M Mulhearn  53 H Muramatsu  111 S Murphy  11 J Musser  109 J Nachtman  60 S Nagu  173 M Nalbandyan  146 R Nandakumar  14 D Naples  50 S Narita  174 D Navas-Nicolás  49 N Nayak  32 M Nebot-Guinot  88 L Necib  172 K Negishi  174 J K Nelson  119 J Nesbit  135 M Nessi  10 D Newbold  14 M Newcomer  84 D Newhart  2 R Nichol  29 E Niner  2 K Nishimura  107 A Norman  2 A Norrick  2 R Northrop  64 P Novella  18 J A Nowak  61 M Oberling  12 A Olivares Del Campo  71 A Olivier  76 Y Onel  60 Y Onishchuk  26 J Ott  32 L Pagani  53 S Pakvasa  107 O Palamara  2 S Palestini  10 J M Paley  2 M Pallavicini  110   79 C Palomares  49 E Pantic  53 V Paolone  50 V Papadimitriou  2 R Papaleo  57 A Papanestis  14 S Paramesvaran  6 J C Park  175 S Parke  2 Z Parsa  5 M Parvu  78 S Pascoli  71 L Pasqualini  54   55 J Pasternak  114 J Pater  41 C Patrick  29 L Patrizii  55 R B Patterson  172 S J Patton  77 T Patzak  30 A Paudel  67 B Paulos  135 L Paulucci  149 Z Pavlovic  2 G Pawloski  111 D Payne  13 V Pec  70 S J M Peeters  9 Y Penichot  66 E Pennacchio  27 A Penzo  60 O L G Peres  102 J Perry  88 D Pershey  91 G Pessina  58 G Petrillo  17 C Petta  47   48 R Petti  115 F Piastra  21 L Pickering  74 F Pietropaolo  10   75 J Pillow  8 J Pinzino  145 R Plunkett  2 R Poling  111 X Pons  10 N Poonthottathil  116 S Pordes  2 M Potekhin  5 R Potenza  47   48 B V K S Potukuchi  176 J Pozimski  114 M Pozzato  54   55 S Prakash  102 T Prakash  77 S Prince  137 G Prior  16 D Pugnere  27 K Qi  112 X Qian  5 J L Raaf  2 R Raboanary  15 V Radeka  5 J Rademacker  6 B Radics  11 A Rafique  12 E Raguzin  5 M Rai  8 M Rajaoalisoa  25 I Rakhno  2 H T Rakotondramanana  15 L Rakotondravohitra  15 Y A Ramachers  8 R Rameika  2 M A Ramirez Delgado  37 B Ramson  2 A Rappoldi  167   168 G Raselli  167   168 P Ratoff  61 S Ravat  10 H Razafinime  15 J S Real  177 B Rebel  2   135 D Redondo  49 M Reggiani-Guzzo  102 T Rehak  113 J Reichenbacher  93 S D Reitzner  2 A Renshaw  85 S Rescia  5 F Resnati  10 A Reynolds  1 G Riccobene  57 L C J Rice  50 K Rielage  65 Y Rigaut  11 D Rivera  84 L Rochester  17 M Roda  13 P Rodrigues  1 M J Rodriguez Alonso  10 J Rodriguez Rondon  93 A J Roeth  91 H Rogers  45 S Rosauro-Alcaraz  118 M Rossella  167   168 J Rout  164 S Roy  87 A Rubbia  11 C Rubbia  178 B Russell  77 J Russell  17 D Ruterbories  76 R Saakyan  29 S Sacerdoti  30 T Safford  74 N Sahu  129 P Sala  10   124 N Samios  5 M C Sanchez  116 D A Sanders  94 D Sankey  14 S Santana  166 M Santos-Maldonado  166 N Saoulidou  165 P Sapienza  57 C Sarasty  25 I Sarcevic  179 G Savage  2 V Savinov  50 A Scaramelli  167 A Scarff  70 A Scarpelli  5 T Schaffer  133 H Schellman  2   40 P Schlabach  2 D Schmitz  64 K Scholberg  91 A Schukraft  2 E Segreto  102 J Sensenig  84 I Seong  32 A Sergi  73 F Sergiampietri  112 D Sgalaberna  11 M H Shaevitz  22 S Shafaq  164 M Shamma  83 H R Sharma  176 R Sharma  5 T Shaw  2 C Shepherd-Themistocleous  14 S Shin  180 D Shooltz  74 R Shrock  112 L Simard  69 N Simos  5 J Sinclair  21 G Sinev  91 J Singh  173 J Singh  173 V Singh  181   182 R Sipos  10 F W Sippach  22 G Sirri  55 A Sitraka  93 K Siyeon  139 D Smargianaki  112 A Smith  91 A Smith  106 E Smith  109 P Smith  109 J Smolik  72 M Smy  32 P Snopok  154 M Soares Nunes  102 H Sobel  32 M Soderberg  183 C J Solano Salinas  81 S Söldner-Rembold  41 N Solomey  169 V Solovov  16 W E Sondheim  65 M Sorel  18 J Soto-Oton  49 A Sousa  25 K Soustruznik  184 F Spagliardi  1 M Spanu  5 J Spitz  36 N J C Spooner  70 K Spurgeon  183 R Staley  73 M Stancari  2 L Stanco  75 H M Steiner  77 J Stewart  5 B Stillwell  64 J Stock  93 F Stocker  10 D Stocks  185 T Stokes  144 M Strait  111 T Strauss  2 S Striganov  2 A Stuart  20 D Summers  94 A Surdo  51 V Susic  19 L Suter  2 C M Sutera  47   48 R Svoboda  53 B Szczerbinska  186 A M Szelc  41 R Talaga  12 H A Tanaka  17 B Tapia Oregui  143 A Tapper  114 S Tariq  2 E Tatar  142 R Tayloe  109 A M Teklu  112 M Tenti  55 K Terao  17 C A Ternes  18 F Terranova  58   68 G Testera  79 A Thea  14 J L Thompson  70 C Thorn  5 S C Timm  2 J Todd  25 A Tonazzo  30 M Torti  58   68 M Tortola  18 F Tortorici  47   48 D Totani  2 M Toups  2 C Touramanis  13 J Trevor  172 W H Trzaska  156 Y-T Tsai  17 Z Tsamalaidze  4 K V Tsang  17 N Tsverava  4 S Tufanli  10 C Tull  77 E Tyley  70 M Tzanov  144 M A Uchida  106 J Urheim  109 T Usher  17 M R Vagins  187 P Vahle  119 G A Valdiviesso  188 E Valencia  119 Z Vallari  172 J W F Valle  18 S Vallecorsa  10 R Van Berg  84 R G Van de Water  65 D Vanegas Forero  102 F Varanini  75 D Vargas  147 G Varner  107 J Vasel  109 G Vasseur  66 K Vaziri  2 S Ventura  75 A Verdugo  49 S Vergani  106 M A Vermeulen  42 M Verzocchi  2 H Vieira de Souza  102 C Vignoli  159 C Vilela  112 B Viren  5 T Vrba  72 T Wachala  189 A V Waldron  114 M Wallbank  25 H Wang  190 J Wang  53 Y Wang  190 Y Wang  112 K Warburton  116 D Warner  45 M Wascko  114 D Waters  29 A Watson  73 P Weatherly  113 A Weber  1   14 M Weber  21 H Wei  5 A Weinstein  116 D Wenman  135 M Wetstein  116 M R While  93 A White  24 L H Whitehead  106 D Whittington  183 M J Wilking  112 C Wilkinson  21 Z Williams  24 F Wilson  14 R J Wilson  45 J Wolcott  123 T Wongjirad  123 K Wood  112 L Wood  28 E Worcester  5 M Worcester  5 C Wret  76 W Wu  2 W Wu  32 Y Xiao  32 G Yang  112 T Yang  2 N Yershov  151 K Yonehara  2 T Young  35 B Yu  5 J Yu  24 R Zaki  97 J Zalesak  155 L Zambelli  99 B Zamorano  126 A Zani  124 L Zazueta  119 G P Zeller  2 J Zennamo  2 K Zeug  135 C Zhang  5 M Zhao  5 Y Zhao  191 E Zhivun  5 G Zhu  44 E D Zimmerman  162 M Zito  66 S Zucchelli  54   55 J Zuklin  155 V Zutshi  63 R Zwaska  2
Affiliations

Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment: DUNE Collaboration

B Abi et al. Eur Phys J C Part Fields. 2021.

Abstract

The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Regions of L/E probed by the DUNE detector compared to 3-flavor and 3+1-flavor neutrino disappearance and appearance probabilities. The gray-shaded areas show the range of true neutrino energies probed by the ND and FD. The top axis shows true neutrino energy, increasing from right to left. The top plot shows the probabilities assuming mixing with one sterile neutrino with Δm412=0.05eV2, corresponding to the slow oscillations regime. The middle plot assumes mixing with one sterile neutrino with Δm412=0.5eV2, corresponding to the intermediate oscillations regime. The bottom plot includes mixing with one sterile neutrino with Δm412=50eV2, corresponding to the rapid oscillations regime. As an example, the slow sterile oscillations cause visible distortions in the three-flavor νμ  survival probability (blue curve) for neutrino energies 10GeV, well above the three-flavor oscillation minimum
Fig. 2
Fig. 2
The top plot shows the DUNE sensitivities to θ14 from the νe CC samples at the ND and FD, along with a comparison with the combined reactor result from Daya Bay and Bugey-3. The bottom plot is adapted from Ref. [18] and displays sensitivities to θ24 using the νμ CC and NC samples at both detectors, along with a comparison with previous and existing experiments. In both cases, regions to the right of the contours are excluded
Fig. 3
Fig. 3
Comparison of the DUNE sensitivity to θ34 using the NC samples at the ND and FD with previous and existing experiments. Regions to the right of the contour are excluded
Fig. 4
Fig. 4
DUNE sensitivities to θμe from the appearance and disappearance samples at the ND and FD are shown on the top plot, along with a comparison with previous existing experiments and the sensitivity from the future SBN program. Regions to the right of the DUNE contours are excluded. The plot is adapted from Ref. [18]. In the bottom plot, the ellipse displays the DUNE discovery potential assuming θμe and Δm412 set at the best-fit point determined by LSND [19] (represented by the star) for the best-case scenario referenced in the text
Fig. 5
Fig. 5
The impact of non-unitarity on the DUNE CPV discovery potential. See the text for details
Fig. 6
Fig. 6
Expected frequentist allowed regions at the 1σ, 90% and 2σ CL for DUNE. All new physics parameters are assumed to be zero so as to obtain the expected non-unitarity sensitivities. A value θ23=0.235π0.738 rad is assumed. The solid lines correspond to the analysis of DUNE data alone, while the dashed lines include the present constraints on non-unitarity. The values of θ23 are shown in radians
Fig. 7
Fig. 7
Allowed regions of the non-standard oscillation parameters in which we see important degeneracies (top) and the complex non-diagonal ones (bottom). We conduct the analysis considering all the NSI parameters as non-negligible. The sensitivity regions are for 68% CL [red line (left)], 90% CL [green dashed line (middle)], and 95% CL [blue dotted line (right)]. Current bounds are taken from [78]
Fig. 8
Fig. 8
Projections of the standard oscillation parameters with nonzero NSI. The sensitivity regions are for 68, 90, and 95% CL. The allowed regions considering negligible NSI (standard oscillation (SO) at 90% CL) are superposed to the SO + NSI
Fig. 9
Fig. 9
One-dimensional DUNE constraints compared with current constraints calculated in Ref. [55]. The left half of the figure shows constraints on the standard oscillation parameters, written in the bottom of each comparison. The five comparisons in the right half show constraints on non-standard interaction parameters
Fig. 10
Fig. 10
The sensitivities of DUNE to the difference of neutrino and antineutrino parameters: Δδ, Δ(Δm312), Δ(sin2θ13) and Δ(sin2θ23) for the atmospheric angle in the lower octant (black line), in the upper octant (light gray line) and for maximal mixing (dark gray line)
Fig. 11
Fig. 11
DUNE sensitivity to the atmospheric angle for neutrinos (blue), antineutrinos (red), and to the combination of both under the assumption of CPT conservation (black)
Fig. 12
Fig. 12
Estimated sensitivity to Lorentz and CPT violation with atmospheric neutrinos in the non-minimal isotropic Standard Model Extension. The sensitivities are estimated by requiring that the Lorentz/CPT-violating effects are comparable in size to those from conventional neutrino oscillations
Fig. 13
Fig. 13
Atmospheric fluxes of neutrinos and antineutrinos as a function of energy for conventional oscillations (dashed line) and in the non-minimal isotropic Standard Model Extension (solid line)
Fig. 14
Fig. 14
Example diagrams for muon-neutrino-induced trident processes in the Standard Model. A second set of diagrams where the photon couples to the negatively charged leptons is not shown. Analogous diagrams exist for processes induced by different neutrino flavors and by antineutrinos. A diagram illustrating trident interactions mediated by a new Z gauge boson, discussed in the text, is shown on the top right
Fig. 15
Fig. 15
Event kinematic distributions of signal and background considered for the selection of muonic trident interactions in the ND LArTPC: number of tracks (top left), angle between the two main tracks (top right), length of the shortest track (bottom left), and the difference in length between the two main tracks (bottom right). The dashed, black vertical lines indicate the optimal cut values used in the analysis
Fig. 16
Fig. 16
95% CL sensitivity of a 40% (blue hashed regions) and a 25% (dashed contours) uncertainty measurement of the νμNνμμ+μ-N cross section at the DUNE near detector to modifications of the vector and axial-vector couplings of muon-neutrinos to muons. The gray regions are excluded at 95% CL by existing measurements of the cross section by the CCFR Collaboration. The intersection of the thin black lines indicates the SM point. A 40% precision measurement could be possible with 6 years of data taking in neutrino mode
Fig. 17
Fig. 17
Existing constraints and projected DUNE sensitivity in the Lμ-Lτ parameter space. Shown in green is the region where the (g-2)μ anomaly can be explained at the 2σ level. The parameter regions already excluded by existing constraints are shaded in gray and correspond to a CMS search for ppμ+μ-Zμ+μ-μ+μ- [160] (“LHC”), a BaBar search for e+e-μ+μ-Zμ+μ-μ+μ- [161] (“BaBar”), a previous measurement of the trident cross section [146, 151] (“CCFR”), a measurement of the scattering rate of solar neutrinos on electrons [–164] (“Borexino”), and bounds from Big Bang Nucleosynthesis [165, 166] (“BBN”). The DUNE sensitivity shown by the solid blue line assumes 6 years of data running in neutrino mode, leading to a measurement of the trident cross section with 40% precision
Fig. 18
Fig. 18
Production of fermionic DM via two-body pseudoscalar meson decay mγV, when MV<mm (top) or via three-body decay mγχχ¯ (center) and DM-electron elastic scattering (bottom)
Fig. 19
Fig. 19
Expected DUNE On-axis (solid red) and PRISM (dashed red) sensitivity using χe-χe- scattering. We assume αD=0.5 in both panels, and MV=3Mχ (Mχ=20MeV) in the left (right) panel, respectively. Existing constraints are shown in grey, and the relic density target is shown as a black line. We also show for comparison the sensitivity curve expected for LDMX-Phase I (solid blue) [193]
Fig. 20
Fig. 20
The inelastic BDM signal under consideration
Fig. 21
Fig. 21
The experimental sensitivities in terms of reference model parameters MV-ϵ for MΨ=0.4GeV, Mχ=5MeV, and δM=Mχ-Mχ=10MeV (top-left panel) and MΨ=2GeV, Mχ=50MeV, and δM=10MeV (top-right panel). The left panels are for Scenario 1 and the right ones are for Scenario 2. The bottom panels compare different reference points in the p-scattering channel. See the text for the details
Fig. 22
Fig. 22
Top: model-independent experimental sensitivities of iBDM search in ¯labmax-σϵ·F plane. The reference experiments are DUNE 20kt (green), and DUNE 40kt (blue) with zero-background assumption for 1-year time exposure. Bottom: Experimental sensitivities of iBDM search in MΨ-σϵ plane. The sensitivities for ¯labmax=0 and 100 m are shown as solid and dashed lines for each reference experiment in the top panel
Fig. 23
Fig. 23
The chain of processes leading to boosted DM signal from the sun. The semi-annihilation and two-component DM models refer to the two examples of the non-minimal dark-sector scenarios introduced in the beginning of Sect. 8. DM denotes the lighter DM in the two-component DM model. X is a lighter dark sector particle that may decay away
Fig. 24
Fig. 24
Diagram illustrating each of the three processes contributing to dark matter scattering in argon: elastic (left), baryon resonance (middle), and deep inelastic (right)
Fig. 25
Fig. 25
Angular distribution of the BDM signal events for a BDM mass of 10 GeV and different boosted factors, γ, and of the atmospheric neutrino NC background events. θ represents the angle of the sum over all the stable final state particles as detailed in the text. The amount of background represents 1-year data collection, magnified by a factor 100, while the amount of signal reflects the detection efficiency of 10,000 MC events. The top plot shows the scenario where neutrons can be reconstructed, while the bottom plot represents the scenario without neutrons
Fig. 26
Fig. 26
Expected 5σ discovery reach with one year of DUNE livetime for one 10kt module including neutrons in reconstruction (top) and excluding neutrons (bottom)
Fig. 27
Fig. 27
Comparison of sensitivity of DUNE for 10 years of data collection and 40kt of detector mass with Super Kamiokande, assuming 10 and 100% of the selection efficiency on the atmospheric neutrino analysis in Ref. [222], and with the reinterpretations of the current results from PICO-60 [223] and PandaX [224]. The samples with two boosted factors, γ=1.25 (top) and γ=10 (bottom), are also presented
Fig. 28
Fig. 28
Kinetic energy of kaons in simulated proton decay events, pK+ν¯, in DUNE. The kinetic energy distribution is shown before and after final state interactions in the argon nucleus
Fig. 29
Fig. 29
Tracking efficiency for kaons in simulated proton decay events, pK+ν¯, as a function of kaon kinetic energy (top) and true path length (bottom)
Fig. 30
Fig. 30
Particle identification using PIDA for muons and kaons in simulated proton decay events, pK+ν¯, and protons in simulated atmospheric neutrino background events. The curves are normalized by area
Fig. 31
Fig. 31
Boosted Decision Tree response for pK+ν¯ for signal (blue) and background (red)
Fig. 32
Fig. 32
Event display for an easily recognizable pK+ν¯ signal event. The vertical axis is TDC value, and the horizontal axis is wire number. The bottom view is induction plane one, the middle is induction plane two, and the top is the collection plane. Hits associated with the reconstructed muon track are shown in red, and hits associated with the reconstructed kaon track are shown in green. Hits from the decay electron can be seen at the end of the muon track
Fig. 33
Fig. 33
Event display for an atmospheric neutrino interaction, νμnμ-p, which might be selected in the pK+ν¯ sample if the proton is misidentified as a kaon. The vertical axis is TDC value, and the horizontal axis is wire number. The bottom view is induction plane one, the middle is induction plane two, and the top is the collection plane. Hits associated with the reconstructed muon track are shown in red, and hits associated with the reconstructed proton track are shown in green. Hits from the decay electron can be seen at the end of the muon track
Fig. 34
Fig. 34
Top: momentum of an individual charged pion before and after final state interactions. Bottom: momentum of an individual neutral pion before and after final state interactions
Fig. 35
Fig. 35
Boosted Decision Tree response for n-n¯ oscillation for signal (blue) and background (red)
Fig. 36
Fig. 36
Event display for an n-n¯ signal event, nn¯nπ0π0π+π-. The vertical axis is TDC value, and the horizontal axis is wire number. The bottom view is induction plane one, the middle is induction plane two, and the top is the collection plane. Hits associated with the back-to-back tracks of the charged pions are shown in red. The remaining hits are from the showers from the neutral pions, neutron scatters, and low-energy de-excitation gammas
Fig. 37
Fig. 37
Event display for a NC DIS interaction initiated by an atmospheric neutrino. The vertical axis is TDC value, and the horizontal axis is wire number. The bottom view is induction plane one, the middle is induction plane two, and the top is the collection plane. This event mimics the n-n¯ signal topology by having multi-particle production and electromagnetic showers
Fig. 38
Fig. 38
The 1σ (dashed) and 3σ (solid) expected sensitivity for measuring Δm312 and sin2θ23 using a variety of samples. Top: The expected sensitivity for 7 years of beam data collection, assuming 3.5 years each in neutrino and antineutrino modes, measured independently using νe appearance (blue), νμ disappearance (red), and ντ appearance (green). Adapted from Ref. [280]. Bottom: The expected sensitivity for the ντ appearance channel using 350 kt·year of atmospheric exposure
Fig. 39
Fig. 39
Sensitivity to the LED model in Refs. [–284] through its impact on the neutrino oscillations expected at DUNE. For comparison, the MINOS sensitivity [285] is also shown
Fig. 40
Fig. 40
The 90% CL sensitivity regions for dominant mixings |UeN|2 (top left), |UμN|2 (top right), and |UτN|2 (bottom) are presented for DUNE ND (black) [287]. The regions are a combination of the sensitivity to HNL decay channels with good detection prospects.These are Nνee, νeμ, νμμ, νπ0, eπ, and μπ. The study is performed for Majorana neutrinos (solid) and Dirac neutrinos (dashed), assuming no background. The region excluded by experimental constraints (grey/brown) is obtained by combining the results from PS191 [288, 289], peak searches [–294], CHARM [295], NuTeV [296], DELPHI [297], and T2K [298]. The sensitivity for DUNE ND is compared to the predictions of future experiments, SBN [299] (blue), SHiP [300] (red), NA62 [301] (green), MATHUSLA [302] (purple), and the Phase II of FASER [303]. For reference, a band corresponding to the contribution light neutrino masses between 20 and 200 meV in a single generation see-saw type I model is shown (yellow). Larger values of the mixing angles are allowed if an extension to see-saw models is invoked, for instance, in an inverse or extended see-saw scheme

References

    1. DUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, vol. II. DUNE Phys. arXiv:2002.03005 [hep-ex]
    1. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.05471 [physics.ins-det] - PubMed
    1. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1512.06148 [physics.ins-det] - PubMed
    1. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.02984 [physics.ins-det] - PubMed
    1. DUNE Collaboration, B. Abi et al., Volume I. Introduction to DUNE. J. Inst. 15(08), T08008 (2020). 10.1088/1748-0221/15/08/T08008. arXiv:2002.02967 [physics.ins-det]