Opioid receptors signaling network
- PMID: 34724150
- PMCID: PMC9411393
- DOI: 10.1007/s12079-021-00653-z
Opioid receptors signaling network
Abstract
Opioid receptors belong to the class A G-protein-coupled receptors and are activated by alkaloid opiates such as morphine, and endogenous ligands such as endorphins and enkephalins. Opioid receptors are widely distributed in the human body and are involved in numerous physiological processes through three major classical opioid receptor subtypes; the mu, delta and kappa along with a lesser characterized subtype, opioid receptor-like (ORL1). Opioids are the most potent analgesics and have been extensively used as a therapeutic drug for the treatment of pain and related disorders. Chronic administration of clinically used opioids is associated with adverse effects such as drug tolerance, addiction and constipation. Several investigations attempted to identify the molecular signaling networks associated with endogenous as well as synthetic opiates, however, there is a paucity of a cumulative depiction of these signaling events. Here, we report a systemic collection of downstream molecules pertaining to four subtypes of opioid receptors (MOR, KOR, DOR and ORL1) in the form of a signaling pathway map. We manually curated reactions induced by the activation of opioid receptors from the literature into five categories- molecular association, activation/inhibition, catalysis, transport, and gene regulation. This led to a dataset of 180 molecules, which is collectively represented in the opioid receptor signaling network following NetPath criteria. We believe that the public availability of an opioid receptor signaling pathway map can accelerate biomedical research in this area because of its high therapeutic significance. The opioid receptors signaling pathway map is uploaded to a freely available web resource, WikiPathways enabling ease of access ( https://www.wikipathways.org/index.php/Pathway:WP5093 ).
Keywords: NetPath; Nociception; Opioid signaling; Opioid tolerance; Post-translational modifications; Protein–protein interactions.
© 2021. The International CCN Society.
Conflict of interest statement
The authors declared that there is no conflict of interest.
Figures
References
-
- Altarifi AA, David B, Muchhala KH, et al. Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. J Psychopharmacol. 2017;31:730–739. doi: 10.1177/0269881116689257. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Research Materials