An analytical framework for interpretable and generalizable single-cell data analysis
- PMID: 34725480
- PMCID: PMC8959118
- DOI: 10.1038/s41592-021-01286-1
An analytical framework for interpretable and generalizable single-cell data analysis
Erratum in
-
Author Correction: An analytical framework for interpretable and generalizable single-cell data analysis.Nat Methods. 2022 Mar;19(3):370. doi: 10.1038/s41592-022-01421-6. Nat Methods. 2022. PMID: 35165450 No abstract available.
Abstract
The scaling of single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here, we have developed a 'linearly interpretable' framework that combines the interpretability and transferability of linear methods with the representational power of non-linear methods. Within this framework we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory and surface estimation and enables their confidence set inference.
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Figures












References
-
- Van Der Maaten L. & Hinton G. Visualizing data using t-SNE. J. Mach. Learn. Res. (2008).
-
- McInnes L, Healy J, Saul N. & Großberger L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. (2018) doi:10.21105/joss.00861. - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources