Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul-Sep;12(3):269-278.
doi: 10.4103/jcvjs.jcvjs_64_21. Epub 2021 Sep 8.

Intramedullary spinal cord tumors: A retrospective multicentric study

Affiliations

Intramedullary spinal cord tumors: A retrospective multicentric study

Anis Hachicha et al. J Craniovertebr Junction Spine. 2021 Jul-Sep.

Abstract

Context: Intramedullary tumors are neoformations taking part on the spinal cord, and they are a rare pathology. Due to the rarity of such lesions, clinical studies take years to ensure a decent feedback with a significant number of cases.

Design: Our study is retrospective and descriptive.

Participants: We share a Tunisian multicentric experience of 27 years through a retrospective study of 120 cases of spinal cord tumors that have been operated in six different centers.

Outcome measures: The clinical, radiological, and histological findings have been analyzed along with postoperative results and tumoral progression so that we could conclude to some factors of prognosis concerning the management of these tumors.

Results: The mean age of our patients is 33.84 years. We had 57 males and 63 females. The most frequent revealing symptom was motor trouble presented as frequent as 77.5% of the patients. Glial tumors were represented in 81 of the cases (67.5%) and nonglial by 39 cases (32.5%). Glial tumors we found were essentially 39 ependymomas and 35 astrocytomas. Surgical resection is key in the management of these lesions; the quality of tumoral resection was a significant factor of disease progression as subtotal resection is correlated to more important progression than total one.

Conclusion: We conclude this work with some statements. In terms of functional results, age is not a significant factor. Presurgical functional state, the histological type, and the extent of surgical resection are the important factors.

Keywords: Astrocytoma; ependymoma; intramedullary tumors; prognosis; spinal cord; surgery.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Clinical stages of McCormick Stage before surgery (I, I, III, IV) and their percentage in our series
Figure 2
Figure 2
Spinal MRI: A case of Cervico Dorsal Ependymoma. Sagittal section on T1 sequence (a), T2 sequence (b), and T1 after gadolinium enhancement (c); Coronal section on T2 sequence: A tumoral process is centro medullar extended from C3 to D1 (d). This process has an isosignal on T1, it is hyperintense on t2 surrounded by a discreet T2 hypointense line. Enahancement is homogenous. There is an association with syringomyelic cavities and even syringobulbia
Figure 3
Figure 3
Spinal MRI: A case of Cervico Dorsal Astrocytoma, Sagittal section on T1 sequence (a), T2 sequence (b), gradient echo sequence (c) and T1 Fatsat after gadolinium enhancement (d and e); Axial sections on T1 Fatsat after Gadolinium enhancement (f,g): There is a tumoral process extended on all of the cervical and dorsal spinal cord, it has an isosignal on T1 and has a heterogenous hypersignal on T2. Enhancement is heterogenous and peripheral delimiting necrosis. It has multiple cysts with a syringomyelia extended to the bulb
Figure 4
Figure 4
Von Hippel Lindau Disease. MRI of the Spine has showed multiple spinal tumors. The symptomatic lesions is on the medullary conus (Red Arrow). The mass shows a cystic form with a mural nodule tissular heterogenous hypointense on T1 with an intense enhancement.(a, b) The Cerebral MRI shows a cerebellar hemangioblastoma (c) Abdominal CT scan showed two renal masses associated to multiple pancreatic cysts (d)
Figure 5
Figure 5
Spinal magnetic resonance imaging: Dermoid cyst of the medullary conus. Sagittal section on T1 sequence (a), T2 sequence (b), T1 fat sat after gadolinium enhancement (c); Axial sections on T2 sequence (d) and T1 fat sat after gadolinium enhancement (e): a tumoral process on the medullary conus with heterogeneous signal on T1 and T2 sequences with an apical crown. Enhancement is peripheral and intense
Figure 6
Figure 6
Spinal MRI: Epidermoid cyst of the medullary conus. Sagittal section on T1 sequence (a), T2 sequence (b), T1 Fatsat after gadolinium enhancement (c); Coronal section on T1 fatsat with gadolinium enhancement (d) Axial sections on T2 sequence(e) T1 Fatsat after Gadolinium enhancement (f)and axial T2 sequence: A tumoral well limited process of the medullary conus heterogenous on all sequences with a peripheral enhancement. This lesion has a double component, one polar and superior hypointense on T1 and hyperintense and heterogenous on T2 the second is of lipidic nature presenting as hyperintense on T1 and disappearing on Fatsat sequences
Figure 7
Figure 7
Spinal MRI: Dorsal Neurinoma. Sagittal section on T1 sequence (a), T2 sequence (b), STIR (Short Tau Inversion Recovery) sequence) (c) T1 Fatsat after gadolinium enhancement (d); Axial sections on T1 Fatsat after Gadolinium enhancement (e):There is a intromedullary dorsal tumoral process on D5-D6, It is hypointense on T1 and has a heterogenous T2 hypersignal with a central hypointense signal. The enhancement is intense and homogenous
Figure 8
Figure 8
Spinal magnetic resonance imaging: Teratoma of the medullary conus. Sagittal section on T1 sequence (a), STIR sequence (b), T1 fat sat before (c) after gadolinium enhancement (d); Coronal section on T2 sequence (e); Axial section on gradient echo (f): a tumoral process with triple component, one tissular with nodular enhancement, one apical with lipidic consistence, and a third that is hemorrhagic

References

    1. Ottenhausen M, Ntoulias G, Bodhinayake I, Ruppert FH, Schreiber S, Förschler A, et al. Intradural spinal tumors in adults – Update on management and outcome. Neurosurg Rev. 2019;42:371–42. - PubMed
    1. Campello C, Parker F, Slimani S, Le Floch A, Herbrecht A, Aghakhani N, et al. Adult intramedullary gliomas. Neurochirurgie. 2017;63:381–90. - PubMed
    1. Chandy MJ, Babu S. Management of intramedullary spinal cord tumours: Review of 68 patients. Neurol India. 1999;47:224–8. - PubMed
    1. Hausmann ON, Kirsch EC, Tolnay M, Gratzl O. Intramedullary spinal cord tumours: A clinical outcome and radiological follow-up study. Swiss Med Wkly. 2001;131:582–7. - PubMed
    1. Fisher CG, Goldschlager T, Boriani S, Varga PP, Fehlings MG, Bilsky MH, et al. A novel scientific model for rare and often neglected neoplastic conditions. Evid Based Spine Care J. 2013;4:160–2. - PMC - PubMed