Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021;62(10):1455-1464.
doi: 10.11406/rinketsu.62.1455.

[New insights into inherited bone marrow failure syndrome]

[Article in Japanese]
Affiliations
Review

[New insights into inherited bone marrow failure syndrome]

[Article in Japanese]
Etsuro Ito et al. Rinsho Ketsueki. 2021.

Abstract

Inherited bone marrow failure syndromes (IBMFS) are a heterogeneous group of genetic disorders characterized by bone marrow failure, congenital anomalies, and increased risk of malignant disease. Next generation sequencing methods have greatly facilitated the discovery of genetic etiology in IBMFS. Recently, de novo mutations activating TP53 were detected in patients with BMFS, mimicking Diamond-Blackfan anemia (DBA), using whole exome sequencing, and these patients were recognized as having a novel disorder. This discovery provides important insights into the previously postulated connection between p53 activation and IBMFS. Furthermore, a novel IBMFS, aldehyde degradation deficiency syndrome, was found in patients with aplastic anemia resembling Fanconi anemia (FA). This disorder is caused by combined inactivating mutations in ADH5 and ALDH2 coding formaldehyde-detoxifying enzymes. In this review, we highlight recent studies on DBA, FA, and their related diseases in Japan.

Keywords: Diamond-Blackfan anemia; Fanconi anemia; Formaldehyde; TP53.

PubMed Disclaimer

MeSH terms

Substances