Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Sep;10(5):564-570.
doi: 10.21037/acs-2021-tviv-25.

Bioprosthetic valve fracture: a practical guide

Affiliations
Review

Bioprosthetic valve fracture: a practical guide

Keith B Allen et al. Ann Cardiothorac Surg. 2021 Sep.

Abstract

Valve-in-valve transcatheter aortic valve replacement (VIV TAVR) is currently indicated for the treatment of failed surgical tissue valves in patients determined to be at high surgical risk for re-operative surgical valve replacement. VIV TAVR, however, often results in suboptimal expansion of the transcatheter heart valve (THV) and can result in patient-prosthesis mismatch (PPM), particularly in small surgical valves. Bioprosthetic valve fracture (BVF) and bioprosthetic valve remodeling (BVR) can facilitate VIV TAVR by optimally expanding the THV and reducing the residual transvalvular gradient by utilizing a high-pressure inflation with a non-compliant balloon to either fracture or stretch the surgical valve ring, respectively. This article, along with the supplemental video, will provide patient selection, procedural planning and technical insights for performing BVF and BVR.

Keywords: Surgical aortic valve replacement; bioprosthetic valve fracture (BVF); replacement; transcatheter aortic valve; valve in valve.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: KBA: Edwards Lifesciences: Research Support, Proctor, Speakers Bureau; Medtronic: Research Support, Speakers Bureau; Abbott: Research Support, Consulting; Boston Scientific: Consulting; AKC: Abbott Vascular: Speakers Bureau; Boston Scientific: Research support, consulting; Edwards Lifesciences: Proctor, Speakers Bureau; Medtronic Inc: Proctor, Speakers Bureau. JTS: Medtronic Inc: Proctor. CPH: none. JS: Edwards Lifesciences and Medtronic: Consulting; TCN: Edwards Lifesciences: Consulting. BW: Edwards Lifesciences: Consulting. JGW: Consulting for Edwards Lifesciences, Abbott, Boston Scientific.

Figures

Video
Video
Bioprosthetic valve fracture: a practical guide.

References

    1. Webb JG, Mack MJ, White JM, et al. Transcatheter Aortic Valve Implantation Within Degenerated Aortic Surgical Bioprostheses: PARTNER 2 Valve-in-Valve Registry. J Am Coll Cardiol 2017;69:2253-62. 10.1016/j.jacc.2017.02.057 - DOI - PubMed
    1. Dvir D, Webb J, Brecker S, et al. Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry. Circulation 2012;126:2335-44. 10.1161/CIRCULATIONAHA.112.104505 - DOI - PubMed
    1. Sathananthan J, Fraser R, Hatoum H, et al. A bench test study of bioprosthetic valve fracture performed before versus after transcatheter valve-in-valve intervention. EuroIntervention 2020;15:1409-16. 10.4244/EIJ-D-19-00939 - DOI - PubMed
    1. Sathananthan J, Sellers S, Barlow AM, et al. Valve-in-Valve Transcatheter Aortic Valve Replacement and Bioprosthetic Valve Fracture Comparing Different Transcatheter Heart Valve Designs: An Ex Vivo Bench Study. JACC Cardiovasc Interv 2019;12:65-75. 10.1016/j.jcin.2018.10.043 - DOI - PubMed
    1. Dvir D, Webb JG, Bleiziffer S, et al. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA 2014;312:162-70. 10.1001/jama.2014.7246 - DOI - PubMed